ACT 381 COMBINED BROWNFIELD PLAN

TO CONDUCT ELIGIBLE MDEQ ENVIRONMENTAL AND/OR **MSF NON-ENVIRONMENTAL ACTIVITIES**

DELTA PLAZA MALL AND OUTLOTS 301 North Lincoln Avenue City of Escanaba Brownfield Redevelopment Authority

SEPTEMBER 18, 2018

Prepared by

Mountain Engineering, Inc **329 Doraland Street** Kingsford, Michigan 49802

Table of Contents

1.0	INTRODUCTION	1
1.1	Proposed Redevelopment and Future Use for Each Eligible Property	1
1.2	Eligible Property Information	1
1.3	Current Use of Each Eligible Property	3
1.4	Site Conditions and Known Environmental Contamination Summary	3
2.0	SCOPE OF WORK AND COSTS	4
2.1	MDEQ Eligible Activities	4
2.2	MSF Eligible Activities	4
2.4	Eligible Activities Costs and Schedule	5
3.0	TAX INCREMENT REVENUE ANALYSIS	7
4.0	RELOCATION	7

EXHIBITS

FIGURES

Figure 1 Property Location Map Figure 2 Eligible Property Map(s)

TABLE

Table 1 TIF Table (Tax Capture/Reimbursement Schedule)

ATTACHMENTS

Attachment A Legal Descriptions

Attachment B Phase II Environmental Site Assessment

ACT 381 COMBINED BROWNFIELD PLAN

1.0 INTRODUCTION

1.1 Proposed Redevelopment and Future Use for Each Eligible Property

There are four eligible properties included in this Brownfield Plan. The Delta Plaza building is an eligible Brownfield because it is a "facility" as defined by the Michigan Department of Environmental Quality (MDEQ). The former Menards building and the two outlots surrounding it meet the definition of a brownfield as "adjacent or contiguous to that property if the redevelopment of the adjacent and contiguous properties is estimated to increase the captured taxable value of that property.

Delta Plaza is being redeveloped, with new stores and updated utilities, flooring, and roofing as needed. Asbestos containing material has been identified and will be removed as required. Some utilities must be upgraded and or moved for redevelopment.

The former Menards Store is also being redeveloped for a new tenant, with a new rood and asbestos abatement.

The east outlot is being developed for a small buisness on the Lincon Avenue cooridor.

The northeast outlot is also being developed for a small buisness.

1.2 Eligible Property Information

1.2.1 Property Eligibility – Location/Legal Description –

This Brownfield plan includes four properties:

- 1. Delta Plaza Mall at 301 North Lincoln Avenue is parcel number 051-120-2825-278-001
- 2. The former Menard's building at 2400 1st Avenue store is parcel number 051-120-2825-278-006
- 3. Northeast Outlot at 319 North Lincoln Road is parcel number 051-120-2825-278-004
- 4. East Outlot at 309 North Lincoln Road is parcel number 051-120-2825-278-005

Legal descriptions for each lot are attached in Attachment A. A legal description for the entire brownfield is:

Block 7, Block 9 and Part of Block 8 of City Center Addition Number 3 to City of Wscanaba and part of the SE ¼ of the NE ¼ of Section 23, Township 39 N Range 23 W all being described as follows:

From the East ¼ corner of Section 25, Township 39 North Range 23 West, measure N 0° 39' E along the East line of said section a distance of 211.91 feet, thence measure N 89° 14' 40" W a distance of 50.0 feet to a point on the north right-of-way line of 1st Avenue Northand the West right-of-way line of State Highway 35, thence measure N 89° 58' W along said North right-of-way line a distance of 100.0 feet to the Point of Beginning of the land herein described. Thence continue N 89 ° 58' W along siad right-of-way line a distance of 550.48, thence north a distance of 361.0 feet, thence N 89° 58' W a distance os 229.8 feet, thence N 0° 05' 39" E a distance of 365.06 feet to the southerly right-of-way of 3rd Avenue North (formerly known as C.NW Railroad right-of-way), thence N 84 ° 50' E along said right-of-wayline a distance of 893.52 feet to the West right-of-way line of State Highway 35, thence s 0 ° 39' W along siad right of way a distance of 180.83 feet, thence S 84 ° 50'W a distance of 150.73 feet, thence S 0 ° 39' W a distance of 82.39 feet, thence S 89 ° 21" E a distance of 150.0 feet to said west right-of-way line, thence thence S 0 ° 39' W along siad right-of-way line a distance of 450.0 feet, thence N 89 ° 58' W a distance of 100 feet, thence S 0° 39' W a distance of 100.0 feet to the point of beginning.

1.2.2 Current Ownership

The Mall is owned by Dial Escanaba Mall 1 LP.

1.2.3 **Proposed Future Ownership**

No change of ownership is anticipated.

1.2.4 Delinguent Taxes, Interest, and Penalties

There are currently no delinquent taxes.

1.2.5 Existing and Proposed Future Zoning

The properties are currently zoned commercial. No change is anticipated

1.3 Current Use of Each Eligible Property

The Mall curently has some retail clients, although the former JC Penny building remains empty.

The former Menard's store is currently empty but is being prepared for a new tenant.

The northeast outlot is vacant but is being developed for a Starbucks franchise.

The east outlot is currently undeveloped. It will be developed as a suitable franchise is interested.

1.4 Site Conditions and Known Environmental Contamination Summary

Based on a Phase II Environmental Site Assessment completed in 2014 and presented in Attaachment 2, tetrachloroethleyene was found in ground water under the Delta Plaza property in excess of MDEQ General Cleanup Criteria. Based on anlytical results exceeding MDEQ action levels for concentrations in groundwater, the site meets the definition of a "facility" as defined in Part 201 of the State of Michigan Natural Resource and Environmental Protection Act of 1994.

2.0 SCOPE OF WORK AND COSTS

2.1 **MDEQ Eligible Activities**

MDEQ Eligible Activities include the preperation of a Phase I Environmental Site Assessment, a Phase II Environmental Site Assessment, a vapor intrusion study, a survey for asbestos containing material, and preparation of a Baseline Environmental Assessment and a Due Care Plan. The projected costs of vapor sampling and vapor mitigation are also included.

2.2 **MSF Eligible Activities**

Michigan State Fund (Non-DEQ) elibile activities on site will include the demolition of various building components, the abatement of asbestos containing materials, and various infrastructure improvements and site preparation activities listed below.

2.2.1 **Demolition**

Demolition of various portions of the buildings will be required during the redevelopment process. This will include floors, flooring, interior walls, ceilings, roofs, facades, and parking lots.

2.2.2 Asbestos Abatement

The asbestos containing floor tile and mastic are being removed from the former Menard's Building. Asbestos abatement will also be required in the former J. C. Penny building.

2.2.3 Infrastructure Improvements

Various utilities will need to be relocated as part of the property development. Also, a new manhole will be installed.

2.2.4 Site Preparation

Site grading will occur as the outlots are developed and the parking lot improved. Paving of the parking lots and sidewalks is also included

2.2.5 **Interest**

No interest charges are included in this Plan, per City of Escanaba Brownfield Redevelopment Authority policy

2.2.7 Assistance to a Land Bank Fast Track Authority

No Land Bank Authority is involved.

2.2.8 Relocation of Public Buildings or Operations -

No public buildings or operations had to be relocated

2.2.9 **Brownfield Plan Preparation**

The costs for preparing this Brownfield Plan are an eligible cost and are included.

2.2.10 Combined Brownfield Plan Implementation-

2.3 Eligible Activities Costs and Schedule

DEQ Eligible Activities Costs and Schedule								
DEQ Eligible Activities	Cost	Completion Season/Year						
Department Specific Activities								
Soil Gas Quality Testing	40,000							
Soil Gas Remediation, if required	100,000							
DEQ Eligible Activities Sub-Total	140,000							
Contingency (15 %)	21,000							
Phase I ESA	1,800							
Phase II ESA	20,000							
Baseline Environmental Assessment	2,100							
Asbestos Survey	7,950							
Due Care Plan	1,600							
Act 381 Plan	3,000							
Interest (Indicate %)	0.00							
DEQ Eligible Activities Total Costs	197,450							

MSF Eligible Activities Costs and Schedule								
MSF Eligible Activities	Cost	Completion Season/Year						
Demolition Sub-Total								
J C Penny Building Demolition	275,000							
Menard's Demolition	100,000							
Lead, Asbestos, Mold Abatement Sub-Total								
Asbestos Abatement J. C. Penny	250,000							
Infrastructure Improvements Sub-Total								
J C Penny – relocate utilities	85,000							
New Manhole	7,700							
Site Preparation Sub-Total								
Site Grading with erosion control	50,000							
Subgrade Replacement	25,000							
Engineering, Surveying, Design	140,000							
MSF Eligible Activities Sub-Total	932,700							
Contingency (15 %)	139,905							
Interest (Indicate %)	0							
Combined Brownfield Plan Preparation								
Combined Brownfield Plan Implementation								
MSF Eligible Activities Total Costs	1,072,605							

The schedule of reimbursement is provided in Table 1.

3.0 TAX INCREMENT REVENUE ANALYSIS

3.1 Captured Taxable Value and Tax Increment Revenues Estimates

As shown on Table 1, non-school taxes will be captured over a period up to the 30 years allowed to reimburse eligible costs. The current taxable value of the four properties is \$1,242,367. This amount is expected to increase with the development of the out lots and also at about 3% per year.

3.2 Tax Increment Revenues Capture Period

The Mall will be placed in an Obsolete Property Rehabilitation Act (OPRA) district for 12 years. Tax capture for the Mall will resume in the 12th year and continue until full reimbursement is made or until the 35th year, whichever comes first. Tax capture for the remaining properties will not be effected by the OPRA district.

4.0 RELOCATION

4.1 Current Residents and Displacement

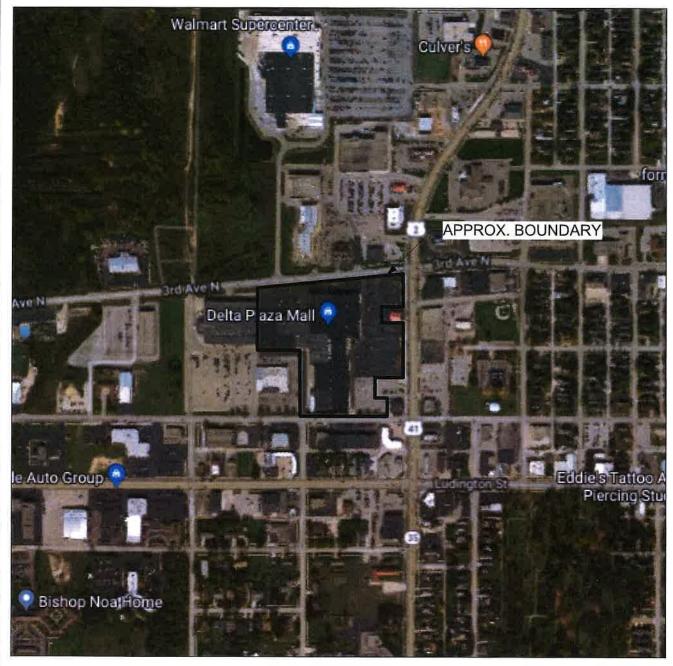
There are no current residents who will be displaced

4.2 Displaced Persons Relocation Plan

Not required

4.3 Relocation Costs Provisions

Not required


4.4 Compliance with Michigan's Relocation Assistance Law

Not required

Figure 1

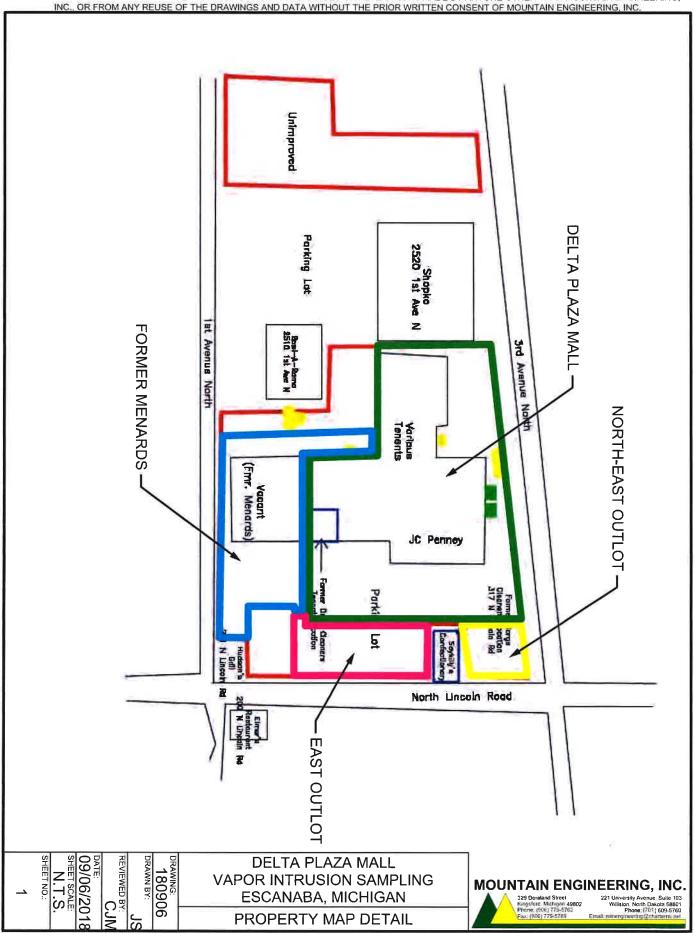
Property Location Map

FIGURE 1

MOUNTAIN ENGINEERING, INC.

329 Doraland Street Kingsford, Michigan 49802 Phone: (906) 779-5762 Fax: (906) 779-5789 221 University Avenue, Suite 103 Williston, North Dakota 58801 Phone: (701) 609-5760 Email: mtnengineering@chartermi.net DELTA PLAZA MALL BROWNFIELD PLAN 301 NORTH LINCOLN ROAD ESCANABA, MICHIGAN

DATE: 09/06/2018


JOB NO: 180906

PROPERTY LOCATION AERIAL

PAGE 1 OF 1

Figure 2

Eligible Property Map(s)

Table 1

TIF Table (Tax Capture/Reimbursment Schedule)

											A				
		Base Year	Year 1	2	3	4	5	6	77	8	9	10	11	12	13
		Taxable Value	\$1,452,39	1 \$1,459,333	\$1,472,753	\$1,486,575	\$1,500,813	\$1,515,477	\$1,530,581	\$1,546,139	\$1,562,163	\$1,578,668	\$1,595,668	\$1,613,178	\$1,631,213
Real Property		\$1,252,391	\$200,000					\$263,086	\$278,190	\$293,748	\$309,772	\$326,277	\$343,277	\$360,787	\$378,822
Capturable Taxable Value		\$1,252,391	\$200,000	υ ψ200,042	φ220,002		33250334 332								
# 950 to acatal	mills levied				Taxes Pa	id on New Prop	erty Value					4 0 40	n 4 707	6 1015	\$ 1,906
Taxing Jurisdiction		Captured	\$ 1,006	\$ 1,041				\$ 1,324							
County			\$ 662					\$ 870	\$ 920						
College		Captured	\$ 3,400						\$ 4,729	\$ 4,994					
City Op		Captured		\$ 62						\$ 88					
Recycling		Captured								\$ 515	\$ 543				\$ 664
Sheriff		Captured									\$ 186	\$ 196			
Comm Act		Captured		\$ 124								\$ 196	\$ 206		\$ 227
DATA		Captured		\$ 124				\$ 53					\$ 69	\$ 72	\$ 76
Central Dispatch	0.20000	Captured	\$ 40	\$ 41	\$ 44	\$ 41	\$ 50	Ψ 00	Ψ	ļ -					
School Operating		Not Captured											1		
State Education Tax		Not Captured												1	
ISD		Not Captured													
Downtown Development		Not Captured													
	28.79105		\$ 5,758	\$ 5,958	\$ 6,344	\$ 6,742	\$ 7,152	\$ 7,575							\$ 10,907
Total Captured	20.79100	\$1,270,055					\$1,238,100	\$1,230,525	\$1,222,516		\$1,205,140				
Expenses Remaining		\$1,270,000	\$5,75	The second secon				\$7,575	\$8,009	\$8,457	\$8,919	\$9,394	\$9,883	\$10,387	\$10,907
Expenses Paid			φ3,73	ψυ,υυ	40,01	7-11	in the second se								
Annual Debt Recovery			0	50 \$0	\$0	\$0	\$(\$0	\$C	\$0	\$0	\$0	\$0	\$0	\$0
Tax capture by CEBRA		7.2	1	الم	/ ψι	<u>΄</u> 1 Ψ									

Eligible Environmental Expenses

\$1,270,055

		14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Real Property		\$2,072,066	\$2,134,228	\$2,198,255	\$2,264,202	\$2,332,128	\$2,402,092	\$2,474,155	\$2,548,380	\$2,624,831	\$2,703,576	\$2,784,683	\$2,868,224	\$2,954,270	\$3,042,899	\$3,134,186	\$3,228,211	\$3,325,057
Capturable Taxable Value		\$819,675	\$881,837	\$945,864	\$1,011,811	\$1,079,737	\$1,149,701							\$1,701,879	\$1,790,508		\$1,975,820	\$2,072,666
Taxing Jurisdiction	mills levied																	
County	5.03170	\$ 4,124	\$ 4,437	\$ 4,759	\$ 5,091	\$ 5,433	\$ 5,785	\$ 6,148	\$ 6,521	\$ 6,906	\$ 7,302	\$ 7,710	\$ 8,130	\$ 8,563	\$ 9,009	\$ 9,469	\$ 9,942	\$ 10,429
College	3.30760	\$ 2,711	\$ 2,917	\$ 3,129	\$ 3,347	\$ 3,571		\$ 4,041					\$ 5,345	\$ 5,629			\$ 6,535	
City Op	17.00000	\$ 13,934	\$ 14,991	\$ 16,080	\$ 17,201	\$ 18,356	\$ 19,545	\$ 20,770	\$ 22,032		\$ 24,670	\$ 26,049	\$ 27,469	\$ 28,932	\$ 30,439	\$ 31,991	\$ 33,589	\$ 35,235
Recycling	0.30000	\$ 246	\$ 265	\$ 284	\$ 304	\$ 324	\$ 345	\$ 367	\$ 389	\$ 412	\$ 435	\$ 460	\$ 485	\$ 511	\$ 537	\$ 565	\$ 593	\$ 622
Sheriff	1.75175	\$ 1,436	\$ 1,545	\$ 1,657	\$ 1,772	\$ 1,891	\$ 2,014	\$ 2,140	\$ 2,270	\$ 2,404	\$ 2,542	\$ 2,684	\$ 2,831	\$ 2,981	\$ 3,137	\$ 3,296	\$ 3,461	\$ 3,631
Comm Act	0.60000				\$ 607	\$ 648	\$ 690	\$ 733	\$ 778	\$ 823	\$ 871	\$ 919	\$ 969	\$ 1,021	\$ 1,074	\$ 1,129	\$ 1,185	\$ 1,244
DATA	0.60000	\$ 492	\$ 529	\$ 568	\$ 607	\$ 648	\$ 690	\$ 733	\$ 778	\$ 823	\$ 871	\$ 919	\$ 969	\$ 1,021	\$ 1,074	\$ 1,129	\$ 1,185	\$ 1,244
Central Dispatch	0.20000	\$ 164	\$ 176	\$ 189	\$ 202	\$ 216	\$ 230	\$ 244	\$ 259	\$ 274	\$ 290	\$ 306	\$ 323	\$ 340	\$ 358	\$ 376	\$ 395	\$ 415
School Operating																		
State Education Tax										1								
ISD																		
Downtown Development										1								- 15
Total Captured	28.79105		·	\$ 27,232		\$ 31,087	\$ 33,101	\$ 35,176	\$ 37,313	\$ 39,514	\$ 41,781	\$ 44,116	\$ 46,522	\$ 48,999	\$ 51,551	\$ 54,179	\$ 56,886	\$ 59,674
Expenses Remaining		\$1,140,969	\$1,115,580	\$1,088,348	\$1,059,217	\$1,028,130	\$995,029	\$959,853	\$922,540	\$883,026	\$841,245	\$797,129	\$750,607	\$701,608	\$650,058	\$595,879	\$538,993	\$479,319
Expenses Paid		\$23,599	\$25,389	\$27,232	\$29,131	\$31,087	\$33,101	\$35,176	\$37,313	\$39,514	\$41,781	\$44,116	\$46,522	\$48,999	\$51,551	\$54,179	\$56,886	\$59,674
Annual Debt Recovery																		
Tax capture by CEBRA		\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Eligible Environmental Expenses

APPENDIX A Legal Descriptions

DELTA PLAZA

SEC 25 T39N R23W [5.7 AC] PRT OF BLKS 7, 8 & 9 OF THE CITY CENTER ADDITION NO. 3 & PRT OF SE1/4 OF NE1/4 BEG 502.33 FT N & 200 FT W OF E1/4 COR OF SEC 25 TH N 89D 58M W 420.89 FT, TH N 0D 05M 39S E 100.5 FT, TH N 89D 58M W 82.5 FT, TH S 0D 05M 39S W 14.5 FT, TH N 89D 58M W 1.22 FT, TH N 89D 58M W 229.8 FT, TH N 0D 05M 39S E 366.06 FT TO S ROW OF 3RD AVE N, TH N 84D 51M 12S E 740.89 FT ALG ROW, TH S 0D 39M W 503.28 FT TO POB. 5.76 ACRES. (DESC CHANGED FOR 2017 AFTER SPLITS BY KD)

FORMER MENARD'S

BEG 211.81 FT N & 150 FT W OF E 1/4 COR OF SEC 25 T39N R23W TH N 89D 58M W ALG 1ST AVE N ROW 550.48 FT, TH N ALG W ROW OF VAC N 25TH ST 376.5 FT TO BLDG FACE, TH S 89D 58M E 1.22 FT, TH N 0D 05M 39S E 14.5 FT, TH S 89D 58M E 82.5 FT, TH S 0D 05M 39S W, ALL BEING ALG BLDG FACE 100.5 FT TO BLDG COR, TH S 89D 58M E 420.89 FT, TH S 0D 44M 05S W 67.52 FT, TH W 42', TH S 123' TH S 89D 58M E 92 FT, TH S 0D 39M W 100 FT TO POB. 3.54 ACRES. 2400 1ST AVENUE NORTH. SPLIT FROM 051-120-2825-278-001 FOR 2017 (123' X 42 SPLIT OFF TO 2825- 278-007 FOR 2018)

NORTHEAST OUT LOT

BEG 844.2 FT N & 200 FT W OF E 1/4 COR OF SEC 25 T39N R 23 W TO POB, TH N 0D 39M E 160.83 FT TO S ROW OF 3RD AVE N. TH N 84D 50M E ALG ROW 150.73 FT TO W ROW OF N LINCOLN ROAD, TH S 0D 39M W 160.83 FT ALG ROW, TH S 84D 50M W 150.73 FT TO POB. .55 ACRE

EAST OUT LOT

BEG 434.81 FT N & 50 FT W OF E 1/4 COR OF SEC 25 T39N R23W TO POB, TH N 89D 58M W 150 FT, TH N 0D 44M 05S E 328.61 FT, TH S 89D 21M E 150 FT TO W ROW OF N LINCOLN ROAD, TH S 0D 44M 05S W ALG ROW 327 FT TO POB. 1.12 ACRES. S 123' SPLIT OFF TO 278-007 FOR 2018.

Legal descriptions are from City Property information

APPENDIX B PHASE II ENVIRONMENTAL SITE ASSESSMENT

LIMITED PHASE II SUBSURFACE INVESTIGATION

FORMER CLEANERS – DELTA SQUARE 301 NORTH LINCOLN ROAD ESCANABA, MICHIGAN 49829

NOVA PROJECT NO. W14-0447 REPORT DATE: JULY 7, 2014

Leaders in Environmental and Engineering Services

LIMITED PHASE II SUBSURFACE INVESTIGATION

FORMER CLEANERS – DELTA SQUARE 301 NORTH LINCOLN ROAD ESCANABA, MICHIGAN 49829

NOVA PROJECT NO. W14-0447 REPORT DATE: JULY 7, 2014

PREPARED FOR:

ESCANABA DELTA MALL LLC C/O DOUGHERTY FUNDING LLC 90 SOUTH SEVENTH STREET, SUITE 4300 MINNEAPOLIS, MINNESOTA 55402

PREPARED BY:

NOVA CONSULTING GROUP, INC. 1107 HAZELTINE BOULEVARD, SUITE 400 CHASKA, MN 55318 TEL: 952-448-9393

TABLE OF CONTENTS

1.0	INTE	RODUCTION	1
	1.1	Authorization	1
	1.2	Background	1
	1.3	Objective	1
	1.4	BackgroundObjective	2
2.0	MET	HODS AND PROCEDURES	3
	2.1	Soil Boring Sampling Locations	3
	2.2	Soil Boring and Temporary Monitoring Well Installation Procedures	3
	2.3	Field Screening	
	2.4	Laboratory Chemical Analyses	4
3.0	RESU	JLTS	5
	3.1	Geology and Site Conditions	5
	3.2	Field Screening	5
	3.3	Field ScreeningChemical Analyses	5
4.0	CON	CLUSIONS AND RECOMMENDATIONS	
5.0	STAI	NDARD OF CARE	

FIGURES

- 1. Site Topographic Map
- 2. Site Location Map
- 3. Soil Boring Location Map

APPENDICES

- A. Photographic Documentation
- B. Soil Boring/Temporary Well Logs
- C. Laboratory Analytical Reports
- D. Tier I Risk Based Screening Levels (Groundwater)

1.0 INTRODUCTION

1.1 Authorization

In accordance with the written authorization received from Escanaba Delta Mall, LLC, Nova Consulting Group, Inc. (Nova) has conducted a Limited Phase II Subsurface Investigation at the former dry cleaners, located 301 Lincoln Road North, Escanaba, Michigan ("the Site"). A Site Topographic Map is attached as Figure 1 and a Site Location Map is attached as Figure 2.

1.2 **Background**

A Phase I Environmental Site dated February 12, 2014 identified the following environmental concern in connection with the Site:

Volatile organic compounds (VOCs) were detected at concentrations exceeding the residential groundwater cleanup objectives in borings advanced in the southeast corner of the Property's main parcel during a subsurface investigation performed in 1998. These results were reported to the Michigan Department of Environmental Quality (MDEQ) in a baseline environmental assessment (BEA) by the former owners of the Property. The extent of the identified groundwater impacts was not determined. Potential sources of the VOCs were opined to have included former dry cleaning establishments that operated at the Property and on an outlot parcel northeast of the Property. As the potential sources of the identified impacts are no longer in operation and the Property is served by municipal water services, the previously identified impacts are not expected to impact continued use of the Property. Additionally, as these facilities are no longer in operation and no significant hazardous material usage was identified as part of current operations; ongoing natural attenuation of the identified groundwater impacts appears likely.

Nova's Phase I ESA recommended the following:

Nova recommends completion of additional sampling at the Property to determine the magnitude and extent of previously identified groundwater impacts at the Property. If the impacts remain at a level that classifies the Property a "facility" according to State of Michigan statutes, a BEA should also be performed for the Property.

1.3 **Objective**

The objective of this Limited Phase II Subsurface Investigation was to evaluate the subsurface soils and groundwater (if encountered) at the Site for the presence of environmental impacts associated with the historic use of portions of the property and an eastern adjacent property as a dry cleaner.

Page | 224

1.4 Scope of Services

As part of this Limited Phase II Subsurface Investigation, Nova completed the following scope of services:

- Clearance of all public underground utilities prior to initiating any subsurface investigation activities;
- Advancement of six (6) Geoprobe® push probe soil borings (GP-1 through GP-6) near the front and rear doors of the former dry cleaner tenant space and one near the east property line bordering the former dry cleaner located to the east of the Site building to assess the potential for subsurface impacts as a result of historic use of the Site as a dry cleaner:
- Conversion of the six (6) exterior push probe borings (GP-1 through GP-6) into temporary monitoring wells;
- Field screening of soil samples collected from all of the borings/wells for organic vapors with a photoionization detector (PID) using the bag-headspace method of field analysis, and documented any indications of unusual odors or staining;
- Collection and submittal of soil samples for laboratory chemical analysis of volatile organic compounds (VOCs) via Environmental Protection Agency (EPA) method 8260;
- Collection and submittal of groundwater samples from the temporary monitoring wells installed at GP-1 through GP-6 for laboratory chemical analysis of VOCs;
- Abandonment of all of the soil borings and temporary monitoring wells in accordance with Michigan Department of Environmental Quality (MDEQ) requirements; and,
- Preparation of this Limited Phase II Subsurface Investigation Report detailing the investigation methods and procedures, summarizing all of the field and analytical results to date, and providing appropriate conclusions and recommendations.

2.0 METHODS AND PROCEDURES

2.1 Soil Boring Sampling Locations

Nova advanced six soil borings at the Site on June 10, 2014. A summary of the sampling and well locations and their rationale for placement is provided in the following Table 1. A Soil Boring Location Map is attached as Figure 3. Photographs of the soil borings locations are included in Appendix A.

TABLE 1 SOIL BORING LOCATIONS AND AREAS OF CONCERN									
Soil Boring/Well ID	Location/Area of Concern/Rationale for Placement	Laboratory Analytical Parameters							
GP-1 / GP-2	Front of the former onsite cleaners space	Soil/Groundwater-VOCs							
GP-3	Eastern property boundary near former offsite former cleaners	Soil/Groundwater-VOCs							
GP-4, GP-5, GP-6	Rear of the former onsite cleaners space	Soil/Groundwater-VOCs							

2.2 Soil Boring and Temporary Monitoring Well Installation Procedures

Soil borings GP-1 through GP-6 were completed using a truck-mounted Geoprobe® Model 5400 Hydraulic push probe. A Geoprobe® Macro-Core 5 sampler was used to collect the soil samples from the borings at continuous four-foot intervals to a depth of up to twelve (12) feet below land surface (bls). The Macro-Core sampler consists of a 2.25-inch outside diameter, 48-inch long nickel-plated alloy-steel sampling tube with an inserted Polyethylene Terephthalate Glycol (PETG) liner that is continuously filled with soil as it is pushed and/or hammered to the desired sampling depth. The liners were removed from the sampler after each sampling interval and a new liner was inserted into the sampler for the next sampling interval. The sampling equipment was cleaned with an alconox wash and clean water rinse prior to each soil boring.

Upon completion of GP-1 through GP-6 temporary groundwater monitoring wells were installed in the boreholes. The temporary wells were constructed using a 3/4-inch diameter, five-foot long 0.010-inch slot PVC screen threaded to a 3/4-inch diameter PVC riser. The well screen was installed to the bottom of the boreholes. Prior to collecting the groundwater samples, a water level was collected and then the sampling points were developed, where recharge allowed, with a low flow peristaltic pump until a significant reduction in the amount of suspended solids was observed in the discharge. The groundwater samples were collected using dedicated polyethylene tubing.

2.3 Field Screening

An environmental geologist recorded a physical description of the soils encountered at each boring location on a field-boring log. Visual classification of soil was based on American Society of Testing and Materials methods 2487 and 2488, Soil Conservation Service, and American/Canadian Stratigraphic standards. The soil sample descriptions

included type, color, grain size, texture, and moisture. The descriptions were recorded on soil boring logs.

In addition to recording the physical description of the soils encountered at each boring location on a field-boring log, the on-site Nova geologist screened the soil samples for indications of environmental impacts. Each of the soil samples retrieved from the borehole was screened for organic vapors using a Mini Rae 3000 PID. The PID was equipped with a 10.6 eV lamp and was calibrated to an isobutylene standard prior to being used at the Site. The soil samples were screened utilizing the headspace field analysis technique. Physical evidence of any unusual odors or staining was also recorded on the field log.

The headspace technique consists of half-filling a quart sized zip-lock bag with a soil sample and quickly sealing the bag. Headspace development proceeds for at least 10 minutes but is completed within 20 minutes. The bag is shaken vigorously for 15 seconds, at both the beginning and the end of the headspace development period. After headspace development, the bag is opened slightly and the PID probe is inserted to one-half the headspace depth. The highest reading observed on the PID was then recorded.

2.4 Laboratory Chemical Analyses

One (1) soil sample and/or one (1) groundwater sample was collected from each of the soil borings and temporary monitoring wells completed at the Site, and submitted for laboratory analysis of VOCs. The soil samples were collected from sampling intervals corresponding to depths that would be most likely to be impacted based on the boring rationale, or from depth intervals that exhibited the most significant field evidence of impacts (i.e. odors, staining or elevated concentrations of organic vapors as measured with a PID).

The soil and groundwater samples were placed in laboratory-supplied containers, stored under refrigerated conditions in the field and during transport to Test America, Inc. in Cedar Rapids, Iowa and under chain of custody protocol. All of the requested analyses were performed by Test America, Inc., in accordance with current MDEQ certifications.

3.0 RESULTS

3.1 Geology and Site Conditions

In general, the soil encountered beneath the Site consisted of fine to medium grained sand. Groundwater was encountered in the borings at depths ranging from approximately 6.5 feet bls to 7.5 feet bls. No bedrock was encountered in any of the borings advanced at the Site. The soil boring logs with complete soil classifications and water level information are included in Appendix B.

3.2 Field Screening

Field screening of the soil samples collected from GP-1 through GP-6 did not detect elevated concentrations of organic vapors when screened with a PID. Furthermore, no unusual odors or significant staining was detected in the soil samples collected from soil borings. The complete organic vapor screening results are included on the soil boring logs attached in Appendix B.

3.3 Chemical Analyses

Chemical analysis of the soil samples collected from GP-1 through GP-6 and the groundwater samples collected from GP-3 and GP-6 did not detect any VOCs at concentrations greater than or equal to the laboratory method detection limits (MDLs). However, as shown below in Table 2, chemical analysis of the groundwater samples collected from GP-1, GP-2, GP-4 and GP-5 detected the common dry cleaning chemical tetrachloroethene. Additionally trichloroethene was detected in the groundwater sample collected from GP-1. The concentrations of tetrachloroethene detected at GP-1 and GP-2 exceed the MDEQ Part 201 Residential and Non-Residential Generic Cleanup Criteria.

The complete laboratory analytical report is attached as Appendix C.

	TABLE 2										
	GROUNDWATER CHEMICAL ANALYSIS RESULTS (RESULTS IN UG/L)										
Compound	Compound GP-1 GP-2 GP-3 GP-4 GP-5 GP-6 Cleanup Criteria										
Tetrachloroethene	96.1	48.6	<1.0	2.03	2.96	<1.0	5				
Trichloroethene	1.77	<1.0	<1.0	<1.0	<1.0	<1.0	5				

Notes:

ug/l = Micrograms-per-liter or parts per billion.

Concentrations in **bold** exceed the stated action level.

< = Not detected above method reporting limits

^{*} MDEQ Part 201 Generic Cleanup Criteria – Groundwater: Residential and Non-Residential

4.0 CONCLUSIONS AND RECOMMENDATIONS

The objective of this Phase II ESA was to evaluate the shallow soil and groundwater at the Site to determine the current levels of the contamination on the Site and determine if it is still a "facility" as defined Part 201 of Act 451, as amended. The facility designation is defined by the presence of hazardous substances in soil and groundwater at a concentration that exceeds the applicable Part 201 GRCC. If the Site is determined to still be a "facility", Nova will prepare and submit a BEA to the MDEQ in order to obtain liability protection for known on-site contamination in accordance with Part 201 of the NREPA Act, 1994 PA 451, as amended.

In general, the Site subsurface (beneath the asphaltic cover) contained Class V gravel underlain by fine to medium grained sand to the termination depth of the borings (up to 12 feet bg). Groundwater levels were measured in the temporary monitoring wells at depths ranging from approximately 6.5 feet to 7.5 feet bls.

Field screening of the soil samples collected from the test borings GP-1 through GP-6 did not detect elevated concentrations of organic vapors when screened with a PID. In addition, no unusual odors or staining was observed in the soil samples collected from GP-1 through GP-6.

Chemical analysis of the soil samples collected from GP-1 through GP-6 and the groundwater samples collected from GP-3 and GP-6 did not detect any VOCs at concentrations greater than or equal to the MDLs. Chemical analysis of the groundwater samples collected from GP-1, GP-2, GP-4 and GP-5 detected concentrations of tetrachloroethene. Additionally trichloroethene was detected in the groundwater sample collected from GP-1. The concentrations of tetrachloroethene detected at GP-1 and GP-2 exceed the MDEO Residential and Non-Residential General Cleanup Criteria.

Based on the exceedance of the General Cleanup Criteria in the groundwater samples collected from GP-1 and GP-2, Nova is recommending a new BEA be prepared for this Site. Additional investigation would be necessary to fully define the extent of the tetrachloroethene concentrations identified in the groundwater at GP-1 and GP-2, and assess any potential impact to human or ecological receptors.

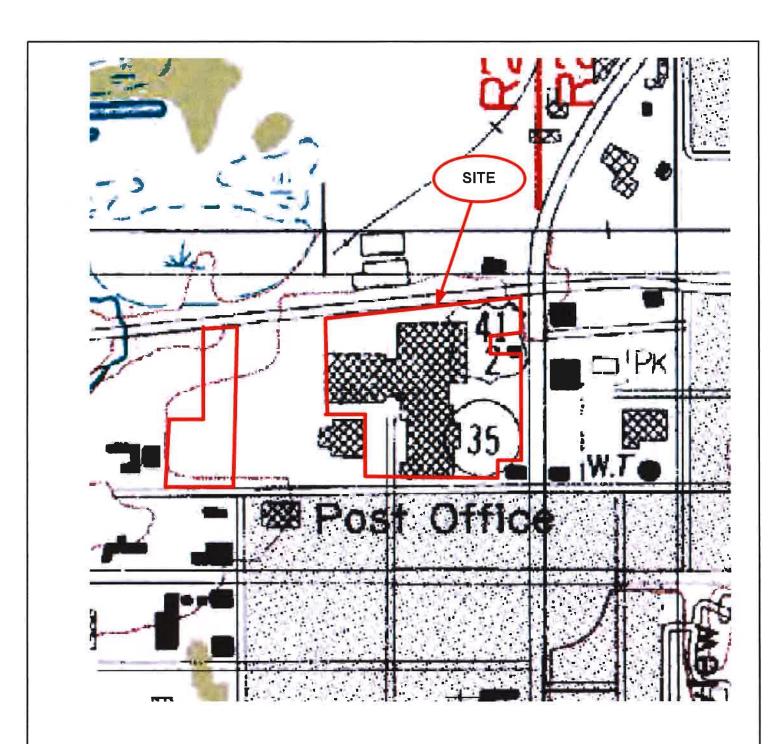
5.0 STANDARD OF CARE

The services performed by Nova on this project have been conducted with that level of care and skill ordinarily exercised by reputable members of the profession, practicing in the same locality, under similar budget and time constraints. No other warranty is expressed or intended.

This document was prepared exclusively for the use or benefit of those listed on the Title page of this report. Reliance or use by any other third party without explicit written authorization from Nova will be at the third party's own risk. No warranties or representations, expressed or implied, are made to any such third party.

Prepared By:

Eric Halpaus Project Manager


Reviewed By:


Michael D. Hayes

Phase II Leader / Hydrogeologist

Mark Perry Vice President

FIGURE 1 SITE TOPOGRAPHIC MAP

SITE TOPOGRAPHIC MAP Delta Square 301 North Lincoln Rd Escanaba, MI 49829 NOVA CONSULTING

Source: USGS 7.5 Minute Topographic Map Escanaba, MI

Quadrangle 1991 Scale: 1:48000

City of Escanaba Brownfield Redevelopment Plan

FIGURE 2

SITE LOCATION MAP

Scale: 1 Inch = 225 Feet

SITE LOCATION MAP Delta Plaza 301 North Lincoln Road Escanaba, Michigan

July 2014

Figure 2

City of Escanaba Brownfield Redevelopment Plan

FIGURE 3 SOIL BORING LOCATION MAP

Soil Boring Location

Scale: 1 Inch = 225 Feet

SOIL BORING LOCATION MAP Delta Plaza 301 North Lincoln Road Escanaba, Michigan NOVA CONSULTING

July 2014

Figure 3

Nova Proj #: W14-0447

APPENDIX A

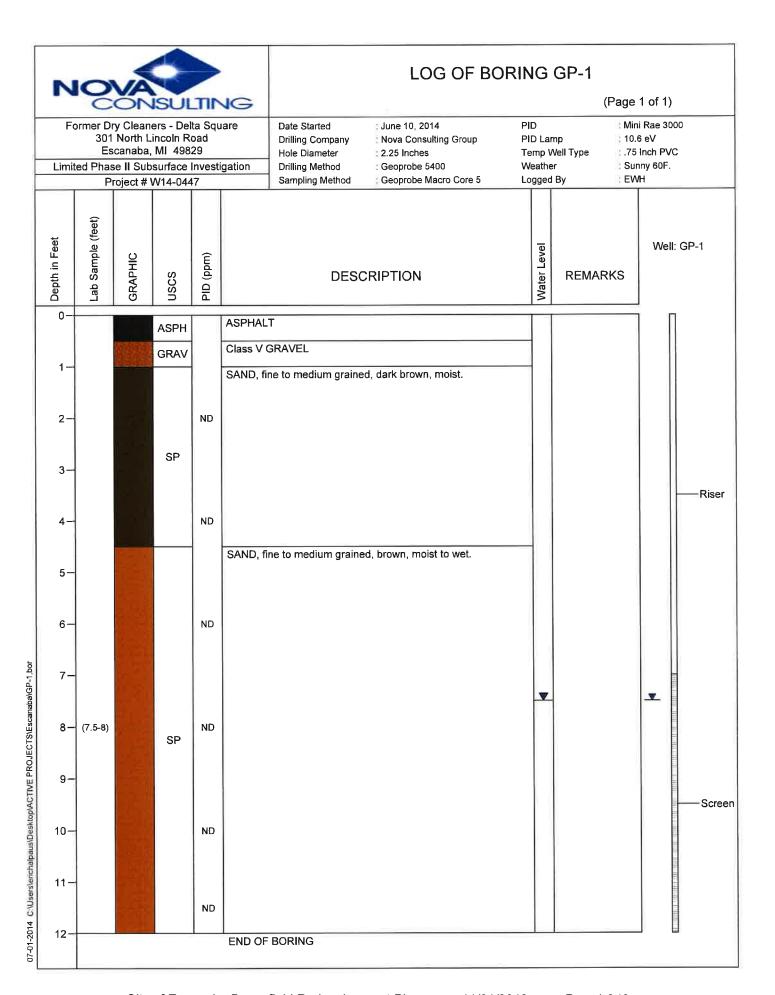
PHOTOGRAPHIC DOCUMENTATION

1. GP-1

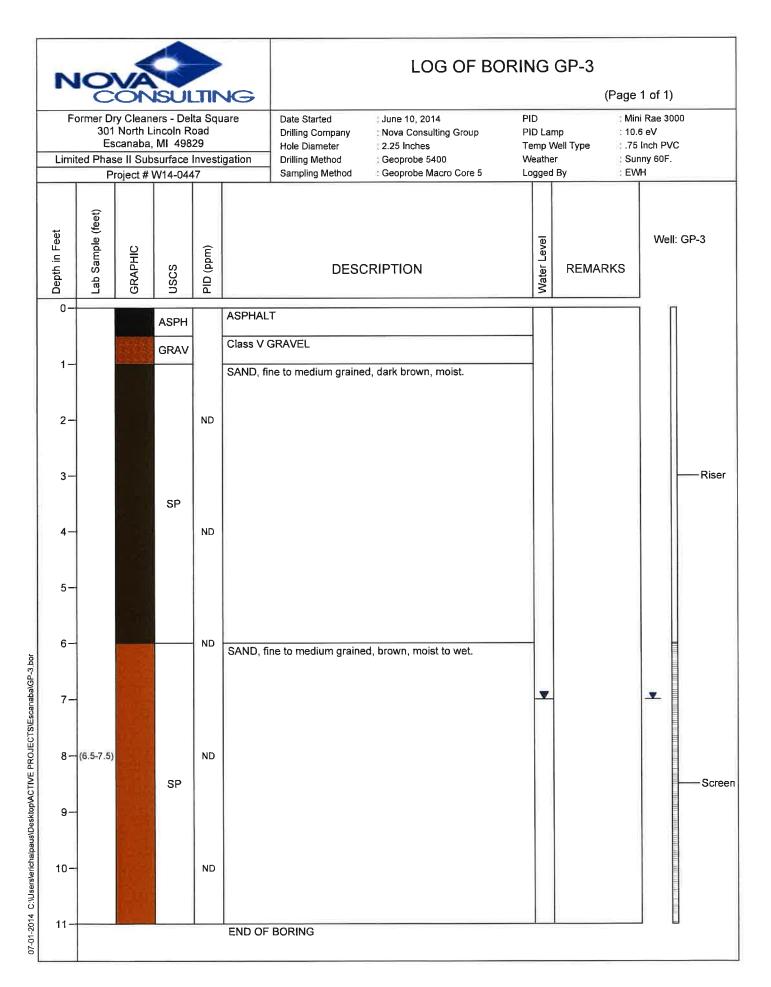
2. GP-2

3. GP-3

4. GP-4

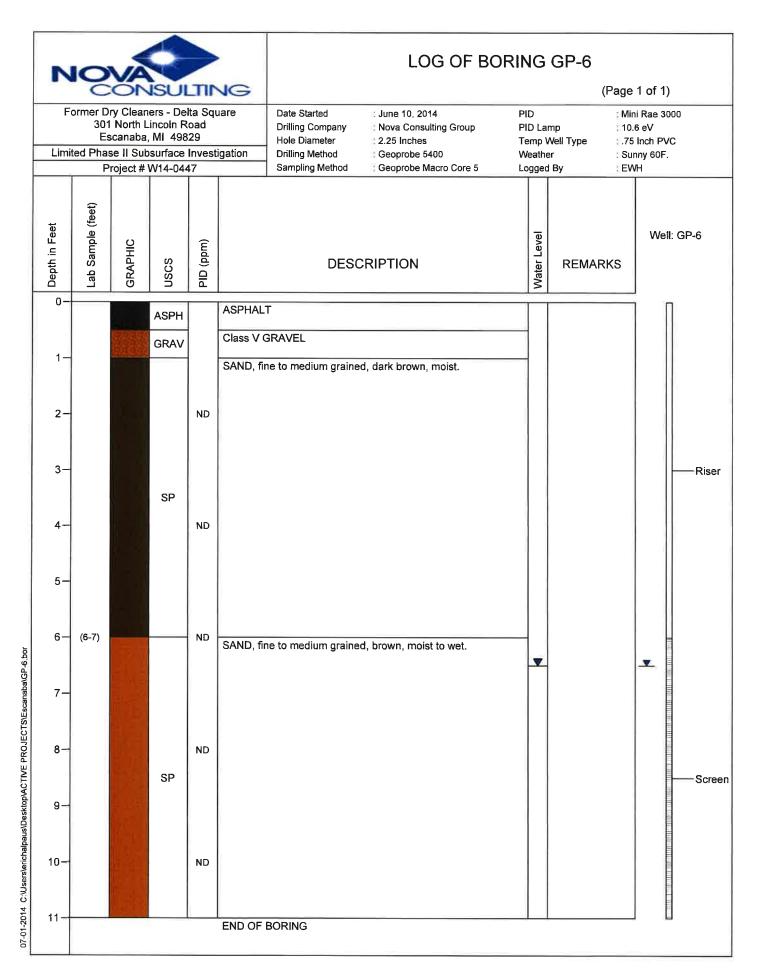


5. GP-5


6. GP-6

APPENDIX B

SOIL BORING/TEMPORARY WELL LOGS



N	O	VÁ	~				LOG OF BO	ORING			
Fo	301	y Clean North L	ers - Del incoln R MI 498	ta Squ oad		Date Started Drilling Company		PID Mini Rae 300 PID Lamp 10.6 eV Temp Well Type75 Inch PVC			
Limit	ed Phas	se II Sub	surface	Investi	gation	Hole Diameter Drilling Method Sampling Method	2.25 InchesGeoprobe 5400Geoprobe Macro Core 5	Weathe Logged	er Si	лпу 60F	
Depth in Feet	Lab Sample (feet)	GRAPHIC	uscs	PID (ppm)		DESC	CRIPTION	Water Level	REMARKS	We	ll: GP-2
0-			ASPH		ASPHAL	Т					
1			GRAV		Class V (
					SAND, fii	ne to medium graine	d, dark brown, moist.				
2-				ND							
3-			SP								
3-											Ris
4-				ND							
_					SAND, fi	ne to medium grains	ed, brown, moist to wet.				
5-											
6-				ND							
7-								•	ī.		
8-	(7.5-8)		SP	ND							
			55								
9-											Scr
10-				ND							
11-				ND							
12-				שאו							

N	O	VA		TIN			LOG OF BO	JKING		10 1 =£ A	
	301 Es	ry Clean North L scanaba, se II Sub	incoln R MI 498	ta Squ oad 29	are	Date Started Drilling Company Hole Diameter Drilling Method	PID : Mini Rae 30 PID Lamp : 10.6 eV Temp Well Type : .75 Inch PV Weather : Sunny 60F.			000 /C	
Limit		roject # \			gation	Sampling Method	: Geoprobe 5400 : Geoprobe Macro Core 5	Logged		EWH	
Depth in Feet	Lab Sample (feet)	GRAPHIC	nscs	PID (ppm)		DESC	CRIPTION	Water Level	REMARKS	We	II: GP-4
0-			ASPH		ASPHAL	т					
			GRAV		Class V (GRAVEL					
1-					SAND, fi	ne to medium graine	ed, dark brown, moist.				
2-				ND							
3-	60										Ris
			SP								
4-				ND							
5-											
6-	(6-7)			ND	SAND, fi	ne to medium graine	ed, brown, moist to wet.				
								•		. V .	
7-											
8-				ND							
			SP								Scr
9-										:	
										1	
10-				ND							

N	0	VA					LOG OF BO	DRING	GP-5		
Fo	ormer Di 301 Es	ry Clear North L scanaba	iers - Del incoln R , MI 498 osurface	lta Squ oad 29	ıare	Date Started Drilling Company Hole Diameter Drilling Method	: June 10, 2014 Nova Consulting Group 2,25 Inches Geoprobe 5400	PID PID Lar Temp V Weathe	mp 1	e 1 of 1) fini Rae 30 0.6 eV 5 Inch PV cunny 60F.	000 /C
T			W14-044		I	Sampling Method	Geoprobe Macro Core 5	Logged		WH	•
Depth in Feet	Lab Sample (feet)	GRAPHIC	nscs	PID (ppm)		DESC	CRIPTION	Water Level	REMARKS	Wel	II: GP-5
0-			ASPH		ASPHAL	Т					
			GRAV		Class V	GRAVEL ne to medium graine	d brown moist				
1-			SP		(C) (112), III	no to modium gramo	a, brown, moist.				
2-				ND							
					SAND, fi	ne to medium graine	d, dark brown, moist.				1
3-											Rise
1			SP								
4-				ND							
ا ۔											
5-					SAND, fi	ne to medium graine	d, brown, moist to wet.				
6-	(6-7)			ND							
								•		_	
7-											
8-			SP	ND							
9-											Scr
3-											
10-				ND							
11-			<u> </u>		END OF	BORING					

APPENDIX C

LABORATORY ANALYTICAL REPORT

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Cedar Falls 704 Enterprise Drive Cedar Falls, IA 50613 Tel: (319)277-2401

TestAmerica Job ID: 310-32823-1

TestAmerica Sample Delivery Group: W14-0447 Client Project/Site: Delta Plaza - Escanaba, MI

For

Nova Consulting Group Inc 1107 Hazeltine Boulevard, #400 Chaska, Minnesota 55318

Attn: Eric Halpaus

Authorized for release by: 6/24/2014 2:12:21 PM

Derrick Klinkenberg, Project Manager I (319)277-2401 derrick.klinkenberg@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

6

7

8

10

15

13

14

15

Table of Contents

Cover Page	l
Table of Contents	2
Case Narrative	3
Sample Summary	ļ
Detection Summary	5
Client Sample Results	7
Definitions	35
Surrogate Summary	36
QC Sample Results	38
QC Association	49
	51
Certification Summary	54
Method Summary	55
Chain of Custody	56
	59

12

44

Case Narrative

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Job ID: 310-32823-1

Laboratory: TestAmerica Cedar Falls

Narrative

Job Narrative 310-32823-1

Comments

No additional comments.

Receipt

The samples were received on 6/13/2014 9:12 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.1° C.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 51461 recovered above the upper control limit for Chloroethane(87.1%D) and Bromomethane(80.2%D). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 8260B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 51461 recovered outside control limits for the following analytes: Chloroethane and Bromomethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-32823-1	GP-1	Ground Water	06/10/14 00:00	06/13/14 09:12
310-32823-2	GP-2	Ground Water	06/10/14 00:00	06/13/14 09:12
310-32823-3	GP-3	Ground Water	06/10/14 00:00	06/13/14 09:12
310-32823-4	GP-4	Ground Water	06/10/14 00:00	06/13/14 09:12
310-32823-5	GP-5	Ground Water	06/10/14 00:00	06/13/14 09:12
310-32823-6	GP-6	Ground Water	06/10/14 00:00	06/13/14 09:12
310-32823-7	GP-1 7.5-8	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-8	GP-2 7.5-8	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-9	GP-3 6.5-7.5	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-10	GP-4 6-7	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-11	GP-5 6-7	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-12	GP-6 6-7	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-13	Meth Blank	Soil	06/10/14 00:00	06/13/14 09:12
310-32823-14	HCI Blank	Water	06/10/14 00:00	06/13/14 09:12

Detection Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-1						Lat	Sample IL): 310-32823-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Tetrachloroethene	96.1		1.00		ug/L	1	8260B	Total/NA
Trichloroethene	1.77		1.00		ug/L	1	8260B	Total/NA
Client Sample ID: GP-2						Lat	Sample II): 310-32823-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Tetrachloroethene	48.6		1.00		ug/L	1	8260B	Total/NA
Client Sample ID: GP-3						Lat	Sample II): 310-32823 -3
No Detections.								
Client Sample ID: GP-4						Lal	Sample II): 310-32823-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [) Method	Prep Type
Tetrachloroethene	2.03	-	1.00		ug/L		8260B	Total/NA
Client Sample ID: GP-5						Lal	Sample II): 310-32823-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac) Method	Prep Type
Tetrachloroethene	2.96	· ·	1.00		ug/L	1	8260B	Total/NA
Client Sample ID: GP-6						Lal	Sample II	D: 310-32823-6
No Detections.								
Client Sample ID: GP-1	7.5-8	_				Lal	Sample II	D: 310-32823-7
No Detections.								
Client Sample ID: GP-2	7.5-8					Lal	o Sample II	D: 310-32823-8
No Detections.								
Client Sample ID: GP-3	6.5-7.5					Lal	o Sample II	D: 310 - 32823-9
No Detections.								
Client Sample ID: GP-4	6-7					Lab	Sample ID	: 310-32823-10
No Detections.								
Client Sample ID: GP-5	6-7					Lab	Sample ID	: 310-32823-1
No Detections.								
Client Sample ID: GP-6	6-7					Lab	Sample ID	: 310-32823-12
No Detections.								
Client Sample ID: Meth	Blank					Lab	Sample ID	: 310-32823-1
No Detections.								

TestAmerica Cedar Falls

This Detection Summary does not include radiochemical test results,

Detection Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

147

Client Sample ID: HCL Blank

No Detections.

Lab Sample ID: 310-32823-14

4

5

6

g

9

14 14

12

G

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

SDG: W14-0447

Client Sample ID: GP-1

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-1

Matrix: Ground Water

flethod: 8260B - Volatile Organi nalyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil F
cetone	<10.0	10.0	ug/L		06/21/14 01:17	
lenzene	<0.500	0.500	ug/L		06/21/14 01:17	
Iromobenzene	<1,00	1.00	ug/L		06/21/14 01:17	
romochloromethane	<5,00	5.00	ug/L		06/21/14 01:17	
romoform	<5,00	5.00	ug/L		06/21/14 01:17	
Iromomethane	<4.00	4.00	ug/L		06/21/14 01:17	
-Butanone (MEK)	<10.0	10.0	ug/L		06/21/14 01:17	
-Butylbenzene	<1.00	1.00	ug/L		06/21/14 01:17	
ec-Butylbenzene	<1.00	1,00	ug/L		06/21/14 01:17	
ert-Butylbenzene	<1.00	1,00	ug/L		06/21/14 01:17	
arbon disulfide	<1.00	1.00	ug/L		06/21/14 01:17	
Carbon tetrachloride	<2.00	2.00	ug/L		06/21/14 01:17	
chlorobenzene	<1.00	1.00	ug/L		06/21/14 01:17	
hlorodibromomethane	<5.00	5.00	ug/L		06/21/14 01:17	
hloroethane	<4.00	4.00	ug/L		06/21/14 01:17	
hloroform	<1.00	1.00	ug/L		06/21/14 01:17	
hloromethane	<3.00	3.00	ug/L		06/21/14 01:17	
	<1.00	1.00	-		06/21/14 01:17	
-Chlorotoluene		1.00	ug/L		06/21/14 01:17	
-Chlorotoluene	<1.00		ug/L			
,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		06/21/14 01:17 06/21/14 01:17	
2-Dibromoethane (EDB)	<10.0	10.0	ug/L			
ibromomethane	<1.00	1,00	ug/L		06/21/14 01:17	
2-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 01:17	
4-Dichlorobenzene	<1.00	1.00	ug/L 		06/21/14 01:17	
3-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 01:17	
chlorodifluoromethane	<3.00	3.00	ug/L		06/21/14 01:17	
1-Dichloroethane	<1.00	1.00	ug/L		06/21/14 01:17	
,2-Dichloroethane	<1.00	1.00	ug/L		06/21/14 01:17	
1-Dichloroethene	<2.00	2.00	ug/L		06/21/14 01:17	
is-1,2-Dichloroethene	<1.00	1,00	ug/L		06/21/14 01:17	
ans-1,2-Dichloroethene	<1.00	1.00	ug/L		06/21/14 01:17	
2-Dichloropropane	<1.00	1.00	ug/L		06/21/14 01:17	
,3-Dichloropropane	<1.00	1.00	ug/L		06/21/14 01:17	
,2-Dichloropropane	<4.00	4.00	ug/L		06/21/14 01:17	
,1-Dichloropropene	<1,00	1.00	ug/L		06/21/14 01:17	
is-1,3-Dichloropropene	<5.00	5.00	ug/L		06/21/14 01:17	
ans-1,3-Dichloropropene	<5.00	5,00	ug/L		06/21/14 01:17	
thylbenzene	<1.00	1.00	ug/L		06/21/14 01:17	
exachlorobutadiene	<5,00	5.00	ug/L		06/21/14 01:17	
exane	<1.00	1.00	ug/L		06/21/14 01:17	
opropylbenzene	<1.00	1.00	ug/L		06/21/14 01:17	
-Isopropyltoluene	<1,00	1.00	ug/L		06/21/14 01:17	
lethylene Chloride	<5,00	5.00	ug/L		06/21/14 01:17	
ethyl tert-butyl ether	<1.00	1.00	ug/L		06/21/14 01:17	
aphthalene	<5.00	5.00	ug/L		06/21/14 01:17	
-Propylbenzene	<1.00	1.00	ug/L		06/21/14 01:17	
tyrene	<1.00	1.00	ug/L		06/21/14 01:17	
,1,1,2-Tetrachloroethane	<1.00	1:00	ug/L		06/21/14 01:17	
,1,2,2-Tetrachloroethane	<1.00	1.00	ug/L		06/21/14 01:17	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

3DG. W14-0447

Client Sample ID: GP-1

Lab Sample ID: 310-32823-1

Matrix: Ground Water

Date Collected:	06/10/14 00:00
Date Received:	06/13/14 09:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	96.1		1.00		ug/L			06/21/14 01:17	1
Toluene	<1.00		1.00		ug/L			06/21/14 01:17	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 01:17	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 01:17	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			06/21/14 01:17	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			06/21/14 01:17	1
Trichloroethene	1.77		1.00		ug/L			06/21/14 01:17	1
Trichlorofluoromethane	<4.00		4.00		ug/L			06/21/14 01:17	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			06/21/14 01:17	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 01:17	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 01:17	1
Vinyl chloride	<1.00		1.00		ug/L			06/21/14 01:17	1
Xylenes, Total	<3.00		3,00		ug/L			06/21/14 01:17	1
Bromodichloromethane	<1.00		1,00		ug/L			06/21/14 01:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		75 - 110			-		06/21/14 01:17	1
Dibromofluoromethane (Surr)	108		75 ₋ 120					06/21/14 01:17	1
Toluene-d8 (Surr)	100		80 ₋ 120					06/21/14 01:17	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

Lab Sample ID: 310-32823-2

Matrix: Ground Water

Client Sample ID: GP-2 Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Analyte	nic Compounds (GC/MS) Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	<10.0	10.0	ug/L		06/21/14 01:43	1
Benzene	<0.500	0.500	ug/L		06/21/14 01:43	1
Bromobenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
Bromochloromethane	<5.00	5.00	ug/L		06/21/14 01:43	1
Bromoform	<5.00	5.00	ug/L		06/21/14 01:43	1
Bromomethane	<4.00	4.00	ug/L		06/21/14 01:43	1
2-Butanone (MEK)	<10.0	10,0	ug/L		06/21/14 01:43	1
n-Butylbenzene	<1.00	1,00	ug/L		06/21/14 01:43	1
sec-Butylbenzene	<1.00	1,00	ug/L		06/21/14 01:43	1
tert-Butylbenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
Carbon disulfide	<1.00	1.00	ug/L		06/21/14 01:43	1
Carbon tetrachloride	<2.00	2.00	ug/L		06/21/14 01:43	1
Chlorobenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
Chlorodibromomethane	<5.00	5.00	ug/L		06/21/14 01:43	1
Chloroethane	<4.00	4.00	ug/L		06/21/14 01:43	1
Chloroform	<1.00	1.00	ug/L		06/21/14 01:43	1
Chloromethane	<3.00	3.00	ug/L		06/21/14 01:43	1
2-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 01:43	1
4-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 01:43	1
1,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		06/21/14 01:43	1
1,2-Dibromoethane (EDB)	<10.0	10.0	ug/L		06/21/14 01:43	1
Dibromomethane	<1:00	1.00	ug/L		06/21/14 01:43	1
1,2-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
1,4-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
1,3-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
Dichlorodifluoromethane	<3.00	3.00	ug/L		06/21/14 01:43	3
1,1-Dichloroethane	<1.00	1.00	ug/L		06/21/14 01:43	4
1,2-Dichloroethane	<1.00	1.00	ug/L		06/21/14 01:43	1
1,1-Dichloroethene	<2.00	2.00	ug/L		06/21/14 01:43	Ä
cis-1,2-Dichloroethene	<1.00	1.00	ug/L		06/21/14 01:43	Ä
trans-1,2-Dichloroethene	<1.00	1.00	ug/L		06/21/14 01:43	ä
1,2-Dichloropropane	<1.00	1.00	ug/L		06/21/14 01:43	ä
1,3-Dichloropropane	<1.00	1.00	ug/L		06/21/14 01:43	3
2,2-Dichloropropane	<4.00	4.00	ug/L		06/21/14 01:43	3
1,1-Dichloropropene	<1.00	1,00	ug/L		06/21/14 01:43	8
cis-1,3-Dichloropropene	<5.00	5.00	ug/L		06/21/14 01:43	
trans-1,3-Dichloropropene	<5.00	5.00	ug/L		06/21/14 01:43	1
Ethylbenzene	<1,00	1.00	ug/L		06/21/14 01:43	W S
•	<5.00	5.00	ug/L		06/21/14 01:43	77
Hexachlorobutadiene	<1.00	1.00	ug/L		06/21/14 01:43	
Hexane	<1.00	1.00	ug/L		06/21/14 01:43	
Isopropylbenzene	<1.00	1.00	ug/L		06/21/14 01:43	
p-Isopropyltoluene					06/21/14 01:43	9
Methylene Chloride	<5.00	5.00	ug/L		06/21/14 01:43	9
Methyl tert-butyl ether	<1.00	1.00	ug/L		06/21/14 01:43	
Naphthalene	<5.00	5.00	ug/L			8
N-Propylbenzene	<1.00	1.00	ug/L		06/21/14 01:43	1
Styrene	<1.00	1.00	ug/L		06/21/14 01:43	:7 3
1,1,1,2-Tetrachloroethane	<1.00	1:.00	ug/L		06/21/14 01:43	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-2

Lab Sample ID: 310-32823-2

Matrix: Ground Water

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	48.6		1.00	-	ug/L	=======================================		06/21/14 01:43	1
Toluene	<1.00		1.00		ug/L			06/21/14 01:43	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 01:43	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 01:43	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			06/21/14 01:43	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			06/21/14 01:43	1
Trichloroethene	<1.00		1.00		ug/L			06/21/14 01:43	1
Trichlorofluoromethane	<4.00		4.00		ug/L			06/21/14 01:43	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			06/21/14 01:43	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 01:43	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 01:43	1
Vinyl chloride	<1.00		1.00		ug/L			06/21/14 01:43	1
Xylenes, Total	<3.00		3.00		ug/L			06/21/14 01:43	1
Bromodichloromethane	<1.00		1.00		ug/L			06/21/14 01:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		75 - 110			:=		06/21/14 01:43	1
Dibromofluoromethane (Surr)	109		75 ₋ 120					06/21/14 01:43	1
Toluene-d8 (Surr)	97		80 ₋ 120					06/21/14 01:43	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-3 Lab Sample ID: 310-32823-3

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Matrix: Ground Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	<10.0	10,0	ug/L		06/21/14 06:26	
Benzene	<0.500	0,500	ug/L		06/21/14 06:26	1
Bromobenzene	<1.00	1.00	ug/L		06/21/14 06:26	1
Bromochloromethane	<5.00	5.00	ug/L		06/21/14 06:26	1
Bromoform	<5.00	5.00	ug/L		06/21/14 06:26	7
Bromomethane	<4.00	4.00	ug/L		06/21/14 06:26	1
2-Butanone (MEK)	<10,0	10.0	ug/L		06/21/14 06:26	- 1
n-Butylbenzene	<1.00	1_00	ug/L		06/21/14 06:26	1
sec-Butylbenzene	<1.00	1.00	ug/L		06/21/14 06:26	1
tert-Butylbenzene	<1.00	1,00	ug/L		06/21/14 06:26	H
Carbon disulfide	<1.00	1.00	ug/L		06/21/14 06:26	1
Carbon tetrachloride	<2.00	2.00	ug/L		06/21/14 06:26	3
Chlorobenzene	<1.00	1.00	ug/L		06/21/14 06:26	9
Chlorodibromomethane	<5.00	5.00	ug/L		06/21/14 06:26	7
Chloroethane	<4.00	4.00	ug/L		06/21/14 06:26	1
Chloroform	<1.00	1.00	ug/L		06/21/14 06:26	4
Chloromethane	<3,00	3.00	ug/L		06/21/14 06:26	1
2-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 06:26	
4-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 06:26	-
1,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		06/21/14 06:26	
1,2-Dibromoethane (EDB)	<10,0	10,0	ug/L		06/21/14 06:26	į.
Dibromomethane	<1.00	1.00	ug/L		06/21/14 06:26	
1,2-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 06:26	
1,4-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 06:26	9
1,3-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 06:26	
Dichlorodifluoromethane	<3.00	3.00	ug/L		06/21/14 06:26	· ·
1,1-Dichloroethane	<1.00	1.00	ug/L		06/21/14 06:26	
1,2-Dichloroethane	<1.00	1.00	ug/L		06/21/14 06:26	
1,1-Dichloroethene	<2.00	2.00	ug/L		06/21/14 06:26	
cis-1,2-Dichloroethene	<1.00	1.00	ug/L		06/21/14 06:26	
trans-1,2-Dichloroethene	<1.00	1.00	ug/L		06/21/14 06:26	1
1,2-Dichloropropane	<1.00	1.00	ug/L		06/21/14 06:26	ì
1,3-Dichloropropane	<1.00	1.00	ug/L		06/21/14 06:26	
2,2-Dichloropropane	<4.00	4.00	ug/L		06/21/14 06:26	
1,1-Dichloropropene	<1.00	1.00	ug/L		06/21/14 06:26	
cis-1,3-Dichloropropene	<5,00	5.00	ug/L		06/21/14 06:26	
trans-1,3-Dichloropropene	<5.00	5.00	ug/L		06/21/14 06:26	4
Ethylbenzene	<1,00	1,00	ug/L		06/21/14 06:26	1
Hexachlorobutadiene	<5.00	5.00	ug/L		06/21/14 06:26	
Hexane	<1.00	1.00	ug/L		06/21/14 06:26	9
Isopropylbenzene	<1.00	1.00	ug/L		06/21/14 06:26	
p-Isopropyltoluene	<1.00	1.00	ug/L		06/21/14 06:26	j
Methylene Chloride						
Methyl tert-butyl ether	<5.00	5.00	ug/L		06/21/14 06:26 06/21/14 06:26	3
•	<1.00	1,00	ug/L			
Naphthalene N. Dropylhopzopo	<5.00	5.00	ug/L		06/21/14 06:26	
N-Propylbenzene	<1.00	1.00	ug/L		06/21/14 06:26	j
Styrene	<1.00	1.00	ug/L		06/21/14 06:26	7
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	<1.00	1.00	ug/L		06/21/14 06:26 06/21/14 06:26	Ì

TestAmerica Cedar Falls

City of Escanaba Brownfield Redevelopment Plan

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-3

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-3

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<1.00	-	1.00		ug/L			06/21/14 06:26	1
Toluene	<1.00		1.00		ug/L			06/21/14 06:26	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 06:26	Ť
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 06:26	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			06/21/14 06:26	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			06/21/14 06:26	1
Trichloroethene	<1.00		1.00		ug/L			06/21/14 06:26	1
Trichlorofluoromethane	<4.00		4.00		ug/L			06/21/14 06:26	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			06/21/14 06:26	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 06:26	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 06:26	1
Vinyl chloride	<1.00		1.00		ug/L			06/21/14 06:26	1
Xylenes, Total	<3.00		3.00		ug/L			06/21/14 06:26	1
Bromodichloromethane	<1.00		1.00		ug/L			06/21/14 06:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		75 - 110					06/21/14 06:26	1
Dibromofluoromethane (Surr)	107		75 - 120					06/21/14 06:26	1
Toluene-d8 (Surr)	100		80 - 120					06/21/14 06:26	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

Lab Sample ID: 310-32823-4 Matrix: Ground Water

Client Sample ID: GP-4

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Acedome	Method: 8260B - Volatile Organi Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Benzene				ug/L			1
Brancheizene	Benzene	<0.500	0.500	_		06/21/14 06:52	1
Bombalformethane						06/21/14 06:52	1
Bromedom	Bromochloromethane	<5.00	5.00			06/21/14 06:52	1
Bramomethane						06/21/14 06:52	1
2-Bulanone (MEK)						06/21/14 06:52	1
n-Butylbenzene				-		06/21/14 06:52	1
Sec_Burylbenzene	·		1.00			06/21/14 06:52	1
International Content	•			-		06/21/14 06:52	1
Carbon disulfide	•	<1.00	1.00			06/21/14 06:52	1
Carbon tetrachloride	•			_		06/21/14 06:52	1
Chlorobenzane						06/21/14 06:52	1
Chlorodibromomethane							1
Chloroethane				=			1
Chloroform							1
Chloromethane							1
2-Chlorotoluene				_			1
Chlorotoluene				_			1
1,2-Dibromo-3-Chloropropane				-			1
1,2-Dibromoethane (EDB) 1,0-Dibromoethane (EDB) 1,0-Dibromoethane (EDB) 1,0-Dibromoethane (EDB) 1,0-Dibromoethane (EDB) 1,2-Dibromoethane (EDB) 1,2-Dibromoethane (EDB) 1,2-Dibromoethane (EDB) 1,0-Dibromoethane (EDB) 1,0-Di							1
1,00	• •			_			Ŷ
1,2-Dichlorobenzene				=			÷
1,4-Dichlorobenzene				_			1
1,3-Dichlorobenzene							1
1,1-Dichlorodifiluoromethane				_			1
1.1-Dichloroethane							i i
1,1,2-Dichloroethane <1.00				_			i
1,1-Dichloroethene				=			Ť.
1.00 1.00 ug/L 06/21/14 06:52				=			3
trans-1,2-Dichloroethene				-			
1,2-Dichloropropane							1
1,3-Dichloropropane	·						1
2,2-Dichloropropane				_			1
1,1-Dichloropropene				_			1
Cis-1,3-Dichloropropene				_			1
Solid Soli	·						1
Ethylbenzene				_			1
Hexachlorobutadiene							4
Hexane							1
Stopropylbenzene							1
p-Isopropyltoluene							1
Methylene Chloride <5.00	• • •						1
Methyl tert-butyl ether <1.00	. , , ,						1
Naphthalene <5.00	·						1
N-Propylbenzene							
Styrene <1.00	•						1
1,1,1,2-Tetrachloroethane <1.00 1.00 ug/L 06/21/14 06:52	• •			_			
				_			1
1,1,2,2-Tetrachloroethane <1.00 1.00 ug/L 06/21/14 06:52						06/21/14 06:52 06/21/14 06:52	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-4

Lab Sample ID: 310-32823-4

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 **Matrix: Ground Water**

Method: 8260B - Volatile Orga	nic Compounds (GC/MS) (Cd	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	2.03	=====	1.00		ug/L	_ =		06/21/14 06:52	1
Toluene	<1.00		1.00		ug/L			06/21/14 06:52	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 06:52	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 06:52	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			06/21/14 06:52	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			06/21/14 06:52	i
Trichloroethene	<1.00		1.00		ug/L			06/21/14 06:52	1
Trichlorofluoromethane	<4.00		4.00		ug/L			06/21/14 06:52	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			06/21/14 06:52	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 06:52	Ť
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 06:52	1
Vinyl chloride	<1.00		1.00		ug/L			06/21/14 06:52	1
Xylenes, Total	<3.00		3.00		ug/L			06/21/14 06:52	1
Bromodichloromethane	<1.00		1.00		ug/L			06/21/14 06:52	3
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		75 - 110			1.3		06/21/14 06:52	
Dibromofluoromethane (Surr)	112		75 ₋ 120					06/21/14 06:52	1
Toluene-d8 (Surr)	99		80 - 120					06/21/14 06:52	1

RL

10.0

MDL Unit

ug/L

D

Prepared

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

<10.0

TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-5

Analyte

Acetone

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-5 Matrix: Ground Water

Analyzed

06/21/14 07:18

5

6

Dil Fac

6

7

8

10

11

12

14

15

Bromochromethane	zene	<0.500	0.500	ug/L	06/21/14 07:18	4
Bromochloromethane	mobenzene				06/21/14 07:18	1
Bennotrom	mochloromethane		5,00		06/21/14 07:18	4
Bromomethane				-	06/21/14 07:18	3
2-Bullanone (MEK)	momethane				06/21/14 07:18	-10
n-Bulylbenzene	utanone (MEK)	<10.0	10,0		06/21/14 07:18	3
see-Butylbenzene	utylbenzene	<1.00	1.00		06/21/14 07:18	1
Carbon distalfide	Butylbenzene	<1.00	1.00		06/21/14 07:18	1
Carbon tetrachloride	Butylbenzene	<1.00	1.00	ug/L	06/21/14 07:18	-1
Chlorobenzene	bon disulfide	<1.00	1.00	ug/L	06/21/14 07:1B	ां
Chlorodibromomethane	bon tetrachloride	<2.00	2.00	ug/L	06/21/14 07:18	1
Chloroethane	probenzene	<1.00	1.00	ug/L	06/21/14 07:18	1
Chloroform	prodibromomethane	<5.00	5.00	ug/L	06/21/14 07:18	1
Chloromethane	proethane	<4.00	4.00	ug/L	06/21/14 07:18	1
2-Chlorotoluene	proform	<1.00	1,00	ug/L	06/21/14 07:18	1
4-Chlorotoluene	promethane	<3.00	3.00	ug/L	06/21/14 07:18	1
1,2-Dibromo-3-Chloropropane	hlorotoluene	<1.00	1.00	ug/L	06/21/14 07:18	1
1,2-Dibromoethane (EDB)	hlorotoluene	<1.00	1.00	ug/L	06/21/14 07:18	1
Dibromomethane	Dibromo-3-Chloropropane	<10.0	10.0	ug/L	06/21/14 07:18	1
1,2-Dichlorobenzene <1.00	Dibromoethane (EDB)	<10.0	10_0	ug/L	06/21/14 07:18	1
1,4-Dichlorobenzene <1,00	romomethane	<1.00	1.00	ug/L	06/21/14 07:18	1
1,3-Dichlorobenzene <1.00	Dichlorobenzene	<1.00	1.00	ug/L	06/21/14 07:18	1
Dichlorodifluoromethane <3,00 3,00 ug/L 06/21/14 07:18 1,1-Dichloroethane <1,00	Dichlorobenzene	<1.00	1.00	ug/L	06/21/14 07:18	1
1,1-Dichloroethane <1,00	Dichlorobenzene	<1.00	1.00	ug/L	06/21/14 07:18	1
1,2-Dichloroethane <1.00	nlorodifluoromethane	<3.00	3.00	ug/L		1
1,1-Dichloroethene <2,00	Dichloroethane	<1.00	1.00	ug/L	06/21/14 07:18	1
cis-1,2-Dichloroethene <1,00	Dichloroethane		1.00	ug/L		1
trans-1,2-Dichloroethene <1.00	Dichloroethene		2.00	ug/L		1
1,2-Dichloropropane <1.00	•			_		1
1,3-Dichloropropane <1.00	•			-		1
2,2-Dichloropropane <4,00	•			_		1
1,1-Dichloropropene <1.00	• •					- 1
cis-1,3-Dichloropropene <5.00				_		1
trans-1,3-Dichloropropene <5.00						1
Ethylbenzene <1.00						1
Hexachlorobutadiene <5.00						1
Hexane <1.00						1
Isopropylbenzene <1.00				-		10
p-Isopropyltoluene <1.00						1
Methylene Chloride <5.00	**			=		20
Methyl tert-butyl ether <1.00						90 20
Naphthalene <5.00	•					90. 46
N-Propylbenzene <1.00 1.00 ug/L 06/21/14 07:18 Styrene <1.00						10
Styrene <1.00 1.00 ug/L 06/21/14 07:18 1,1,1,2-Tetrachloroethane <1.00						3)
1,1,1,2-Tetrachloroethane <1.00 1.00 ug/L 06/21/14 07:18	· -					7
				=		10
1,1,2,2-1 et a control ce unante \$1,00 1.00 ug/L 06/21/14 07:18						
	z,z-retrachioroethane	<1,00	1.00	ug/L	00/21/14 07:18	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-5

Lab Sample ID: 310-32823-5

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	2.96		1.00	ug/L			06/21/14 07:18	1
Toluene	<1.00		1.00	ug/L			06/21/14 07:18	1
1,2,3-Trichlorobenzene	<5.00		5.00	ug/L			06/21/14 07:18	Ť
1,2,4-Trichlorobenzene	<5.00		5.00	ug/L			06/21/14 07:18	1
1,1,1-Trichloroethane	<1.00		1.00	ug/L			06/21/14 07:18	1
1,1,2-Trichloroethane	<1.00		1.00	ug/L			06/21/14 07:18	Ť
Trichloroethene	<1.00		1.00	ug/L			06/21/14 07:18	1
Trichlorofluoromethane	<4.00		4.00	ug/L			06/21/14 07:18	1
1,2,3-Trichloropropane	<1.00		1.00	ug/L			06/21/14 07:18	1
1,2,4-Trimethylbenzene	<1.00		1.00	ug/L			06/21/14 07:18	1
1,3,5-Trimethylbenzene	<1.00		1.00	ug/L			06/21/14 07:18	1
Vinyl chloride	<1.00		1.00	ug/L			06/21/14 07:18	1
Xylenes, Total	<3.00		3.00	ug/L			06/21/14 07:18	1
Bromodichloromethane	<1.00		1.00	ug/L			06/21/14 07:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		75 - 110				06/21/14 07:18	1
Dibromofluoromethane (Surr)	108		75 ₋ 120				06/21/14 07:18	1
Toluene-d8 (Surr)	99		80 ₋ 120				06/21/14 07:18	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-6

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-6

Matrix: Ground Water

Method: 8260B - Volatile Organ	-	•		l lia	1122	D	A = -1	Da E
Analyte		Qualifier R		Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<10,0	10,		ug/L			06/21/14 07:44	
Benzene	<0.500	0.50		ug/L			06/21/14 07:44	
Bromobenzene	<1.00	1.0		ug/L			06/21/14 07:44	
Bromochloromethane	<5.00	5.0		ug/L			06/21/14 07:44	
Bromoform	<5.00	5.0		ug/L "			06/21/14 07:44	
3romomethane	<4.00	4.0		ug/L			06/21/14 07:44	
2-Butanone (MEK)	<10.0	10,		ug/L			06/21/14 07:44	
n-Butylbenzene	<1.00	1.0		ug/L			06/21/14 07:44	
sec-Butylbenzene	<1.00	1,0		ug/L			06/21/14 07:44	
ert-Butylbenzene	<1.00	1.0		ug/L			06/21/14 07:44	
Carbon disulfide	<1.00	1.0		ug/L			06/21/14 07:44	
Carbon tetrachloride	<2.00	2.0)	ug/L			06/21/14 07:44	
Chlorobenzene	<1.00	1.0		ug/L			06/21/14 07:44	
Chlorodibromomethane	<5.00	5.0)	ug/L			06/21/14 07:44	
Chloroethane	<4.00	4.0)	ug/L			06/21/14 07:44	
Chloroform	<1.00	1.0)	ug/L			06/21/14 07:44	
Chloromethane	<3.00	3.0)	ug/L			06/21/14 07:44	
2-Chlorotoluene	<1.00	1.0	ס	ug/L			06/21/14 07:44	
1-Chlorotoluene	<1.00	1.0	ס	ug/L			06/21/14 07:44	
1,2-Dibromo-3-Chloropropane	<10.0	10.	ס	ug/L			06/21/14 07:44	
,2-Dibromoethane (EDB)	<10.0	10,)	ug/L			06/21/14 07:44	
Dibromomethane	<1.00	1.0	ס	ug/L			06/21/14 07:44	
1,2-Dichlorobenzene	<1.00	1.0)	ug/L			06/21/14 07:44	
I,4-Dichlorobenzene	<1.00	1.0	0	ug/L			06/21/14 07:44	
1,3-Dichlorobenzene	<1.00	1.0)	ug/L			06/21/14 07:44	
Dichlorodifluoromethane	<3.00	3.0	ס	ug/L			06/21/14 07:44	
,1-Dichloroethane	<1.00	1.0	ס	ug/L			06/21/14 07:44	
,2-Dichloroethane	<1.00	1.0	0	ug/L			06/21/14 07:44	
I,1-Dichloroethene	<2.00	2.0	0	ug/L			06/21/14 07:44	
cis-1,2-Dichloroethene	<1.00	1.0	ס	ug/L			06/21/14 07:44	
rans-1,2-Dichloroethene	<1.00	1.0	D	ug/L			06/21/14 07:44	
1,2-Dichloropropane	<1.00	1.0	D	ug/L			06/21/14 07:44	
1,3-Dichloropropane	<1.00	1,0	D	ug/L			06/21/14 07:44	
2,2-Dichtoropropane	<4.00	4.0	D	ug/L			06/21/14 07:44	
1,1-Dichloropropene	<1.00	1.0	D	ug/L			06/21/14 07:44	
cis-1,3-Dichloropropene	<5.00	5.0	D	ug/L			06/21/14 07:44	
trans-1,3-Dichloropropene	<5.00	5.0		ug/L			06/21/14 07:44	
Ethylbenzene	<1.00	1.0		ug/L			06/21/14 07:44	
Hexachlorobutadiene	<5.00	5.0		ug/L			06/21/14 07:44	
Hexane	<1.00	1.0		ug/L			06/21/14 07:44	
sopropylbenzene	<1.00	1.0		ug/L			06/21/14 07:44	
o-Isopropyltoluene	<1.00	1.0		-			06/21/14 07:44	
				ug/L				
Methylene Chloride	<5.00	5.0		ug/L			06/21/14 07:44	
Methyl tert-butyl ether	<1.00	1.0		ug/L			06/21/14 07:44	
Naphthalene	<5.00	5.0		ug/L			06/21/14 07:44	
N-Propylbenzene	<1.00	1,0		ug/L			06/21/14 07:44	
E.				LLC /			06/21/14 07:44	
Styrene 1,1,1,2-Tetrachloroethane	<1,00 <1.00	1.0 1.0		ug/L ug/L			06/21/14 07:44	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-6

Lab Sample ID: 310-32823-6

Matrix: Ground Water

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<1.00		1.00		ug/L			06/21/14 07:44	1
Toluene	<1.00		1.00		ug/L			06/21/14 07:44	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 07:44	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 07: 44	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			06/21/14 07:44	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			06/21/14 07:44	1
Trichloroethene	<1.00		1.00		ug/L			06/21/14 07:44	্ৰ
Trichlorofluoromethane	<4.00		4.00		ug/L			06/21/14 07:44	্ৰ,
1,2,3-Trichloropropane	<1.00		1.00		ug/L			06/21/14 07:44	া)
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 07:44	ৰ)
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 07:44	1
Vinyl chloride	<1.00		1.00		ug/L			06/21/14 07:44	1
Xylenes, Total	<3.00		3.00		ug/L			06/21/14 07:44	1
Bromodichloromethane	<1.00		1.00		ug/L			06/21/14 07:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		75 - 110					06/21/14 07:44	1
Dibromofluoromethane (Surr)	107		75 - 120					06/21/14 07:44	1
Toluene-d8 (Surr)	100		80 ₋ 120					06/21/14 07:44	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI

Client Sample ID: GP-1 7.5-8

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

TestAmerica Job ID: 310-32823-1 SDG: W14-0447

Lab Sample ID: 310-32823-7

	Ma	itrix: Soil
	Percent Sol	ids: 86.3
Dropared	Applymod	Dil Fac
Prepared	Analyzed	Dil I

Analyte	Result Qualifier	RL	MDL Unit	<u>D</u>	Prepared	Analyzed	Dil F
Acetane	<629	629	ug/Kg	φ	06/15/14 10:13	06/15/14 19:23	
Benzene	<126	126	ug/Kg	∜	06/15/14 10:13	06/15/14 19:23	
Bromobenzene	<126	126	ug/Kg	⇒	06/15/14 10:13	06/15/14 19:23	
Bromochloromethane	<126	126	ug/Kg	lβ	06/15/14 10:13	06/15/14 19:23	
Bromoform	<126	126	ug/Kg	l ti	06/15/14 10:13	06/15/14 19:23	
Bromomethane	<629 **	629	ug/Kg	♦	06/15/14 10:13	06/15/14 19:23	
-Butanone (MEK)	<315	315	ug/Kg	ψ	06/15/14 10:13	06/15/14 19:23	
-Butylbenzene	<126	126	ug/Kg	ंदि	06/15/14 10:13	06/15/14 19:23	
ec-Butylbenzene	<126	126	ug/Kg	٥	06/15/14 10:13	06/15/14 19:23	
ert-Butylbenzene	<126	126	ug/Kg	意	06/15/14 10:13	06/15/14 19:23	
arbon disulfide	<126	126	ug/Kg	\$	06/15/14 10:13	06/15/14 19:23	
arbon tetrachloride	<126	126	ug/Kg	÷.	06/15/14 10:13	06/15/14 19:23	
Chlorobenzene	<126	126	ug/Kg	45	06/15/14 10:13	06/15/14 19:23	
Chlorodibromomethane	<126	126	ug/Kg	å	06/15/14 10:13	06/15/14 19:23	
hloroethane	<126	126	ug/Kg	\$	06/15/14 10:13	06/15/14 19:23	
hloroform	<126	126	ug/Kg	⇒	06/15/14 10:13	06/15/14 19:23	
hloromethane	<315	315	ug/Kg	÷	06/15/14 10:13	06/15/14 19:23	
-Chlorotoluene	<126	126	ug/Kg	٥	06/15/14 10:13	06/15/14 19:23	
-Chlorotoluene	<126	126	ug/Kg	4	06/15/14 10:13	06/15/14 19:23	
2-Dibromo-3-Chloropropane	<126	126	ug/Kg	#	06/15/14 10:13	06/15/14 19:23	
2-Dibromoethane (EDB)	<126	126	ug/Kg	ÇE	06/15/14 10:13	06/15/14 19:23	
ibromomethane	<126	126	ug/Kg	ø	06/15/14 10:13	06/15/14 19:23	
2-Dichlorobenzene	<126	126	ug/Kg	φ	06/15/14 10:13	06/15/14 19:23	
4-Dichlorobenzene	<126	126	ug/Kg	51	06/15/14 10:13	06/15/14 19:23	
3-Dichlorobenzene	<126	126	ug/Kg	ø	06/15/14 10:13	06/15/14 19:23	
ichlorodifluoromethane	<126	126	ug/Kg ug/Kg	Þ	06/15/14 10:13	06/15/14 19:23	
	<126			4	06/15/14 10:13	06/15/14 19:23	
1-Dichloroethane		126	ug/Kg	, ±			
2-Dichloroethane	<126	126	ug/Kg	→ •>	06/15/14 10:13	06/15/14 19:23	
1-Dichloroethene	<126	126	ug/Kg		06/15/14 10:13	06/15/14 19:23	
s-1,2-Dichloroethene	<126	126	ug/Kg	ä	06/15/14 10:13	06/15/14 19:23	
ans-1,2-Dichloroethene	<126	126	ug/Kg	, th	06/15/14 10:13	06/15/14 19:23	
2-Dichloropropane	<126	126	ug/Kg		06/15/14 10:13	06/15/14 19:23	
3-Dichloropropane	<126	126	ug/Kg	₫.	06/15/14 10:13	06/15/14 19:23	
2-Dichloropropane	<126	126	ug/Kg	Ų.	06/15/14 10:13	06/15/14 19:23	
1-Dichloropropene	<126	126	ug/Kg	ঝ	06/15/14 10:13	06/15/14 19:23	
s-1,3-Dichloropropene	<126	126	ug/Kg	۵	06/15/14 10:13	06/15/14 19:23	
ans-1,3-Dichloropropene	<126	126	ug/Kg	įά	06/15/14 10:13	06/15/14 19:23	
thylbenzene	<126	126	ug/Kg	ψ	06/15/14 10:13	06/15/14 19:23	
exachlorobutadiene	<126	126	ug/Kg	♦	06/15/14 10:13	06/15/14 19:23	
exane	<126	126	ug/Kg	4	06/15/14 10:13	06/15/14 19:23	
opropylbenzene	<126	126	ug/Kg	ά	06/15/14 10:13	06/15/14 19:23	
Isopropyltoluene	<126	126	ug/Kg	ä	06/15/14 10:13	06/15/14 19:23	
ethylene Chloride	<315	315	ug/Kg	ಸ	06/15/14 10:13	06/15/14 19:23	
ethyl tert-butyl ether	<126	126	ug/Kg	Ŀ	06/15/14 10:13	06/15/14 19:23	
aphthalene	<126	126	ug/Kg	ф	06/15/14 10:13	06/15/14 19:23	
- Propylbenzene	<126	126	ug/Kg	∜	06/15/14 10:13	06/15/14 19:23	
tyrene	<126	126	ug/Kg	#	06/15/14 10:13	06/15/14 19:23	
,1,1,2-Tetrachloroethane	<126	126	ug/Kg	\$	06/15/14 10:13	06/15/14 19:23	
,1,2,2-Tetrachloroethane	<126	126	ug/Kg	Ω.	06/15/14 10:13	06/15/14 19:23	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-1 7.5-8

Lab Sample ID: 310-32823-7

Matrix: Soil

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Percent Solids: 86.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<126		126		ug/Kg	\$	06/15/14 10:13	06/15/14 19:23	1
Toluene	<126		126		ug/Kg	₫ŧ	06/15/14 10:13	06/15/14 19:23	1
1,2,3-Trichlorobenzene	<126		126		ug/Kg	∌	06/15/14 10:13	06/15/14 19:23	1
1,2,4-Trichlorobenzene	<126		126		ug/Kg	₩	06/15/14 10:13	06/15/14 19:23	1
1,1,1-Trichloroethane	<126		126		ug/Kg	₽	06/15/14 10:13	06/15/14 19:23	1
1,1,2-Trichloroethane	<126		126		ug/Kg	≎	06/15/14 10:13	06/15/14 19:23	1
Trichloroethene	<126		126		ug/Kg	≎	06/15/14 10:13	06/15/14 19:23	1
Trichlorofluoromethane	<126		126		ug/Kg	₽	06/15/14 10:13	06/15/14 19:23	1
1,2,3-Trichloropropane	<126		126		ug/Kg	ಫ	06/15/14 10:13	06/15/14 19:23	1
1,2,4-Trimethylbenzene	<126		126		ug/Kg	ಫ	06/15/14 10:13	06/15/14 19:23	1
1,3,5-Trimethylbenzene	<126		126		ug/Kg	\$	06/15/14 10:13	06/15/14 19:23	1
Vinyl chloride	<126		126		ug/Kg	#	06/15/14 10:13	06/15/14 19:23	1
Xylenes, Total	<189		189		ug/Kg	‡ t	06/15/14 10:13	06/15/14 19:23	1
Bromodichloromethane	<126		126		ug/Kg	Ω	06/15/14 10:13	06/15/14 19:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	-	80 - 120				06/15/14 10:13	06/15/14 19:23	1
Dibromofluoromethane (Surr)	95		75 ₋ 125				06/15/14 10:13	06/15/14 19:23	1
Toluene-d8 (Surr)	98		80 - 120				06/15/14 10:13	06/15/14 19:23	9
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	13.7	-	0.100		%			06/13/14 14:32	1
Percent Solids	86.3		0.100		%			06/13/14 14:32	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-2 7.5-8

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-8

Matrix: Soil Percent Solids: 84.2

Acetone Benzene Bromobenzene Bromochloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene	<566 <113 <113 <113 <113 <113 <2566 <283	566 113 113 113 113 566	ug/Kg ug/Kg ug/Kg ug/Kg	\$ \$ \$	06/15/14 10:13 06/15/14 10:13 06/15/14 10:13	06/15/14 19:54 06/15/14 19:54	1
Bromobenzene Bromochloromethane Bromoform Bromomethane 2-Butanone (MEK)	<113 <113 <113 <566 * <283	113 113 113	ug/Kg	⇒			1
Bromochloromethane Bromoform Bromomethane 2-Butanone (MEK)	<113 <113 <566 * <283	113 113			DC/45/44 4D-42		
Bromoform Bromomethane 2-Butanone (MEK)	<113 <566 * <283	113	ug/Kg		00/10/14 10:13	06/15/14 19:54	
Bromomethane 2-Butanone (MEK)	<566 * <283			Þ	06/15/14 10:13	06/15/14 19:54	3
2-Butanone (MEK)	<283	566	ug/Kg	Þ	06/15/14 10:13	06/15/14 19:54	
, ,			ug/Kg	Ф	06/15/14 10:13	06/15/14 19:54	*
n-Butylbenzene	.446	283	ug/Kg	\$	06/15/14 10:13	06/15/14 19:54	10
	<113	113	ug/Kg	ক	06/15/14 10:13	06/15/14 19:54	<i>a</i>
sec-Butylbenzene	<113	113	ug/Kg	Ü	06/15/14 10:13	06/15/14 19:54	8
tert-Butylbenzene	<113	113	ug/Kg	\$	06/15/14 10:13	06/15/14 19:54	100
Carbon disulfide	<113	113	ug/Kg	\$	06/15/14 10:13	06/15/14 19:54	
Carbon tetrachloride	<113	113	ug/Kg	0	06/15/14 10:13	06/15/14 19:54	0.5
Chlorobenzene	<113	113	ug/Kg	ψ	06/15/14 10:13	06/15/14 19:54	3
Chlorodibromomethane	<113	113	ug/Kg	≎	06/15/14 10:13	06/15/14 19:54	62
Chloroethane	<113	113	ug/Kg	Þ	06/15/14 10:13	06/15/14 19:54	119
Chloroform	<113	113	ug/Kg	#	06/15/14 10:13	06/15/14 19:54	10
Chloromethane	<283	283	ug/Kg	4	06/15/14 10:13	06/15/14 19:54	2.2
2-Chlorotoluene	<113	113	ug/Kg	đ	06/15/14 10:13	06/15/14 19:54	1.5
4-Chlorotoluene	<113	113	ug/Kg	♦	06/15/14 10:13	06/15/14 19:54	(4
1,2-Dibromo-3-Chloropropane	<113	113	ug/Kg	#1	06/15/14 10:13	06/15/14 19:54	
1,2-Dibromoethane (EDB)	<113	113	ug/Kg	4	06/15/14 10:13	06/15/14 19:54	34
Dibromomethane	<113	113	ug/Kg	\$	06/15/14 10:13	06/15/14 19:54	
1,2-Dichlorobenzene	<113	113	ug/Kg	4	06/15/14 10:13	06/15/14 19:54	
1,4-Dichlorobenzene	<113	113	ug/Kg	Ď.	06/15/14 10:13	06/15/14 19:54	
1,3-Dichlorobenzene	<113	113	ug/Kg	. 🗇	06/15/14 10:13	06/15/14 19:54	
Dichlorodifluoromethane	<113	113	ug/Kg	্ব	06/15/14 10:13	06/15/14 19:54	
1,1-Dichloroethane	<113	113	ug/Kg	4	06/15/14 10:13	06/15/14 19:54	
1,2-Dichloroethane	<113	113	ug/Kg	ģ.	06/15/14 10:13	06/15/14 19:54	
1,1-Dichloroethene	<113	113	ug/Kg	٠	06/15/14 10:13	06/15/14 19:54	
cis-1,2-Dichloroethene	<113	113	ug/Kg	Ħ	06/15/14 10:13	06/15/14 19:54	
trans-1,2-Dichloroethene	<113	113	ug/Kg	र्दा	06/15/14 10:13	06/15/14 19:54	
1,2-Dichloropropane	<113	113	ug/Kg	έà	06/15/14 10:13	06/15/14 19:54	
	<113	113	ug/Kg	φ	06/15/14 10:13	06/15/14 19:54	
1,3-Dichloropropane	<113	113	ug/Kg	ů.	06/15/14 10:13	06/15/14 19:54	
2,2-Dichloropropane		113		á	06/15/14 10:13	06/15/14 19:54	
1,1-Dichloropropene	<113 <113		ug/Kg	a	06/15/14 10:13	06/15/14 19:54	
cis-1,3-Dichloropropene		113	ug/Kg	ħ	06/15/14 10:13	06/15/14 19:54	
trans-1,3-Dichloropropene	<113	113	ug/Kg				
Ethylbenzene	<113	113	ug/Kg	Ť.	06/15/14 10:13	06/15/14 19:54	
Hexachlorobutadiene	<113	113	ug/Kg	ф 	06/15/14 10:13	06/15/14 19:54	
Hexane	<113	113	ug/Kg	÷	06/15/14 10:13	06/15/14 19:54	
Isopropylbenzene	<113	113	ug/Kg	4	06/15/14 10:13	06/15/14 19:54	
p-Isopropyltoluene	<113	113	ug/Kg		06/15/14 10:13	06/15/14 19:54	
Methylene Chloride	<283	283	ug/Kg	#	06/15/14 10:13	06/15/14 19:54	
Methyl tert-butyl ether	<113	113	ug/Kg	ψ.	06/15/14 10:13	06/15/14 19:54	
Naphthalene	<113	113	ug/Kg	ची:	06/15/14 10:13	06/15/14 19:54	
N-Propylbenzene	<113	113	ug/Kg	4	06/15/14 10:13	06/15/14 19:54	
Styrene	<113	113	ug/Kg	ä	06/15/14 10:13	06/15/14 19:54	
1,1,1,2-Tetrachloroethane	<113	113	ug/Kg	ψ	06/15/14 10:13	06/15/14 19:54	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-2 7.5-8

Date Collected: 06/10/14 00:00

Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-8

Matrix: Soil

Percent Solids: 84.2

W.	
III bu	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<113	<u> </u>	113		ug/Kg	‡	06/15/14 10:13	06/15/14 19:54	1
Toluene	<113		113		ug/Kg	☆	06/15/14 10:13	06/15/14 19:54	1
1,2,3-Trichlorobenzene	<113		113		ug/Kg	❖	06/15/14 10:13	06/15/14 19:54	1
1,2,4-Trichlorobenzene	<113		113		ug/Kg	₽	06/15/14 10:13	06/15/14 19:54	1
1,1,1-Trichloroethane	<113		113		ug/Kg	≎	06/15/14 10:13	06/15/14 19:54	1
1,1,2-Trichloroethane	<113		113		ug/Kg	⋾	06/15/14 10:13	06/15/14 19:54	1
Trichloroethene	<113		113		ug/Kg	≎	06/15/14 10:13	06/15/14 19:54	1
Trichlorofluoromethane	<113		113		ug/Kg	♯	06/15/14 10:13	06/15/14 19:54	1
1,2,3-Trichloropropane	<113		113		ug/Kg	\$	06/15/14 10:13	06/15/14 19:54	1
1,2,4-Trimethylbenzene	<113		113		ug/Kg	₽	06/15/14 10:13	06/15/14 19:54	1
1,3,5-Trimethylbenzene	<113		113		ug/Kg	❖	06/15/14 10:13	06/15/14 19:54	1
Vinyl chloride	<113		113		ug/Kg	\$	06/15/14 10:13	06/15/14 19:54	1
Xylenes, Total	<170		170		ug/Kg	¢	06/15/14 10:13	06/15/14 19:54	3
Bromodichloromethane	<113		113		ug/Kg	₿	06/15/14 10:13	06/15/14 19:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		80 - 120				06/15/14 10:13	06/15/14 19:54	1
Dibromofluoromethane (Surr)	94		75 - 125				06/15/14 10:13	06/15/14 19:54	1
Toluene-d8 (Surr)	99		80 - 120				06/15/14 10:13	06/15/14 19:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.8		0.100		%			06/13/14 14:32	1
Percent Solids	84.2		0.100		%			06/13/14 14:32	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-3 6.5-7.5

Method: 8260B - Volatile Organic Compounds (GC/MS)

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

cis-1,3-Dichloropropene

Hexachlorobutadiene

Isopropylbenzene

p-Isopropyltoluene

Methylene Chloride

Naphthalene

Styrene

N-Propylbenzene

Methyl tert-butyl ether

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

Ethylbenzene

Hexane

trans-1,3-Dichloropropene

Lab Sample ID: 310-32823-9

Matrix: Soil Percent Solids: 82.9

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<592	592	ug/Kg	#	06/15/14 10:13	06/15/14 20:24	1
Benzene	<118	118	ug/Kg	❖	06/15/14 10:13	06/15/14 20:24	1
Bromobenzene	<118	118	ug/Kg	ä	06/15/14 10:13	06/15/14 20:24	1
Bromochloromethane	<118	118	ug/Kg	đ	06/15/14 10:13	06/15/14 20:24	1
Bromoform	<118	118	ug/Kg	⋾	06/15/14 10:13	06/15/14 20:24	1
Bromomethane	<592	592	ug/Kg	₫F	06/15/14 10:13	06/15/14 20:24	1
2-Butanone (MEK)	<296	296	ug/Kg	Ů-	06/15/14 10:13	06/15/14 20:24	1
n-Butylbenzene	<118	118	ug/Kg	্ৰ	06/15/14 10:13	06/15/14 20:24	1
sec-Butylbenzene	<118	118	ug/Kg	à	06/15/14 10:13	06/15/14 20:24	1
tert-Butylbenzene	<118	118	ug/Kg	্ৰ	06/15/14 10:13	06/15/14 20:24	1
Carbon disulfide	<118	118	ug/Kg	Ų	06/15/14 10:13	06/15/14 20:24	1
Carbon tetrachloride	<118	118	ug/Kg	÷	06/15/14 10:13	06/15/14 20:24	5
Chlorobenzene	<118	118	ug/Kg	÷,c	06/15/14 10:13	06/15/14 20:24	1
Chlorodibromomethane	<118	118	ug/Kg	ক	06/15/14 10:13	06/15/14 20:24	1
Chloroethane	<118	118	ug/Kg	4	06/15/14 10:13	06/15/14 20:24	1
Chloroform	<118	118	ug/Kg	貫	06/15/14 10:13	06/15/14 20:24	1
Chloromethane	<296	296	ug/Kg	್ಷ	06/15/14 10:13	06/15/14 20:24	1
2-Chlorotoluene	<118	118	ug/Kg	্	06/15/14 10:13	06/15/14 20:24	Ĩ.
4-Chlorotoluene	<118	118	ug/Kg	♦	06/15/14 10:13	06/15/14 20:24	1
1,2-Dibromo-3-Chloropropane	<118	118	ug/Kg	□□	06/15/14 10:13	06/15/14 20:24	1
1,2-Dibromoethane (EDB)	<118	118	ug/Kg	ψ	06/15/14 10:13	06/15/14 20:24	1
Dibromomethane	<118	118	ug/Kg	⇒	06/15/14 10:13	06/15/14 20:24	1
1,2-Dichlorobenzene	<118	118	ug/Kg	4	06/15/14 10:13	06/15/14 20:24	1
1,4-Dichlorobenzene	<118	118	ug/Kg	章	06/15/14 10:13	06/15/14 20:24	1
1,3-Dichlorobenzene	<118	118	ug/Kg	4:	06/15/14 10:13	06/15/14 20:24	1
Dichlorodifluoromethane	<118	118	ug/Kg	Þ	06/15/14 10:13	06/15/14 20:24	1
1,1-Dichloroethane	<118	118	ug/Kg	Ф	06/15/14 10:13	06/15/14 20:24	1
1,2-Dichloroethane	<118	118	ug/Kg	⋾	06/15/14 10:13	06/15/14 20:24	1
1,1-Dichloroethene	<118	118	ug/Kg	<u> </u>	06/15/14 10:13	06/15/14 20:24	1
cis-1,2-Dichloroethene	<118	118	ug/Kg	草	06/15/14 10:13	06/15/14 20:24	Ĭ
trans-1,2-Dichloroethene	<118	118	ug/Kg	đ	06/15/14 10:13	06/15/14 20:24	1
1,2-Dichloropropane	<118	118	ug/Kg	ಭ	06/15/14 10:13	06/15/14 20:24	1
1,3-Dichloropropane	<118	118	ug/Kg	Ó	06/15/14 10:13	06/15/14 20:24	1
2,2-Dichloropropane	<118	118	ug/Kg	3	06/15/14 10:13	06/15/14 20:24	1
1,1-Dichloropropene	<118	118	ug/Kg	র	06/15/14 10:13	06/15/14 20:24	1
• •							

TestAmerica Cedar Falls

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

06/15/14 20:24

1

1

1

3

1

118

118

118

118

118

118

118

296

118

118

118

118

118

118

<118

<118

<118

<118

<118

<118

<118

<296

<118

<118

<118

<118

<118

<118

ug/Kg

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13

06/15/14 10:13 06/15/14 10:13

06/15/14 10:13

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-3 6.5-7.5

Lab Sample ID: 310-32823-9

Matrix: Soil

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Percent Solids: 82.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<118	-	118		ug/Kg	₩	06/15/14 10:13	06/15/14 20:24	1
Toluene	<118		118		ug/Kg	≎	06/15/14 10:13	06/15/14 20:24	1
1,2,3-Trichlorobenzene	<118		118		ug/Kg	∌	06/15/14 10:13	06/15/14 20:24	1
1,2,4-Trichlorobenzene	<118		118		ug/Kg	₽	06/15/14 10:13	06/15/14 20:24	ां
1,1,1-Trichloroethane	<118		118		ug/Kg	4	06/15/14 10:13	06/15/14 20:24	1
1,1,2-Trichloroethane	<118		118		ug/Kg	⋾	06/15/14 10:13	06/15/14 20:24	1
Trichloroethene	<118		118		ug/Kg	\$	06/15/14 10:13	06/15/14 20:24	1
Trichlorofluoromethane	<118		118		ug/Kg	¤	06/15/14 10:13	06/15/14 20:24	1
1,2,3-Trichloropropane	<118		118		ug/Kg	\$	06/15/14 10:13	06/15/14 20:24	9
1,2,4-Trimethylbenzene	<118		118		ug/Kg	₽	06/15/14 10:13	06/15/14 20:24	1
1,3,5-Trimethylbenzene	<118		118		ug/Kg	❖	06/15/14 10:13	06/15/14 20:24	9
Vinyl chloride	<118		118		ug/Kg	#	06/15/14 10:13	06/15/14 20:24	্ৰ
Xylenes, Total	<178		178		ug/Kg	র্	06/15/14 10:13	06/15/14 20:24	9
Bromodichloromethane	<118		118		ug/Kg	₽	06/15/14 10:13	06/15/14 20:24	7
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 _ 120				06/15/14 10:13	06/15/14 20:24	13
Dibromofluoromethane (Surr)	94		75 ₋ 125				06/15/14 10:13	06/15/14 20:24	19
Toluene-d8 (Surr)	100		80 - 120				06/15/14 10:13	06/15/14 20:24	10
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.1		0.100		%			06/13/14 14:32	- 3
Percent Solids	82.9		0.100		%			06/13/14 14:32	8

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-4 6-7

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-10

Matrix: Soil

Percent Solids: 92.4

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
Acetone	<522	522	ug/Kg	<u>₹</u>	06/15/14 10:13	06/15/14 20:54	
Benzene	<104	104	ug/Kg	≎	06/15/14 10:13	06/15/14 20:54	
Bromobenzene	<104	104	ug/Kg	ıβ	06/15/14 10:13	06/15/14 20:54	
Bromochloromethane	<104	104	u g /Kg	i i i	06/15/14 10:13	06/15/14 20:54	
Bromoform	<104	104	ug/Kg	⋾	06/15/14 10:13	06/15/14 20:54	
Bromomethane	<522	522	ug/Kg	₹\$	06/15/14 10:13	06/15/14 20:54	
2-Butanone (MEK)	<261	261	ug/Kg	۵	06/15/14 10:13	06/15/14 20:54	
ı-Butylbenzene	<104	104	ug/Kg	巾	06/15/14 10:13	06/15/14 20:54	
sec-Butylbenzene	<104	104	ug/Kg	ф	06/15/14 10:13	06/15/14 20:54	
ert-Butylbenzene	<104	104	ug/Kg	ä	06/15/14 10:13	06/15/14 20:54	
Carbon disulfide	<104	104	ug/Kg	4	06/15/14 10:13	06/15/14 20:54	
Carbon tetrachloride	<104	104	ug/Kg	÷	06/15/14 10:13	06/15/14 20:54	
Chlorobenzene	<104	104	ug/Kg	÷.	06/15/14 10:13	06/15/14 20:54	
Chlorodibromomethane	<104	104	ug/Kg	‡ŧ	06/15/14 10:13	06/15/14 20:54	
Chloroethane	<104	104	ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	
Chloroform	<104	104	ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	
	<261	261		4	06/15/14 10:13	06/15/14 20:54	
Chloromethane	<104	104	ug/Kg	÷ †i	06/15/14 10:13	06/15/14 20:54	
2-Chlorotoluene			ug/Kg	÷			
-Chlorotoluene	<104	104	ug/Kg	\$	06/15/14 10:13	06/15/14 20:54 06/15/14 20:54	
,2-Dibromo-3-Chloropropane	<104	104	ug/Kg	ů.	06/15/14 10:13		
,2-Dibromoethane (EDB)	<104	104	ug/Kg		06/15/14 10:13	06/15/14 20:54	
Dibromomethane	<104	104	ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	
,2-Dichlorobenzene	<104	104	ug/Kg	φ	06/15/14 10:13	06/15/14 20:54	
,4-Dichlorobenzene	<104	104	ug/Kg	Ť.	06/15/14 10:13	06/15/14 20:54	
,3-Dichlorobenzene	<104	104	ug/Kg	<i>₹</i>	06/15/14 10:13	06/15/14 20:54	
Dichlorodifluoromethane	<104	104	ug/Kg	⊉	06/15/14 10:13	06/15/14 20:54	
,1-Dichloroethane	<104	104	ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	
,2-Dichloroethane	<104	104	ug/Kg	⋾	06/15/14 10:13	06/15/14 20:54	
,1-Dichloroethene	<104	104	ug/Kg	4	06/15/14 10:13	06/15/14 20:54	
is-1,2-Dichloroethene	<104	104	ug/Kg		06/15/14 10:13	06/15/14 20:54	
rans-1,2-Dichloroethene	<104	104	ug/Kg	ारी	06/15/14 10:13	06/15/14 20:54	
,2-Dichloropropane	<104	104	ug/Kg	⋾	06/15/14 10:13	06/15/14 20:54	
,3-Dichloropropane	<104	104	ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	
2,2-Dichloropropane	<104	104	ug/Kg	ŲΕ	06/15/14 10:13	06/15/14 20:54	
1,1-Dichloropropene	<104	104	ug/Kg	⇒	06/15/14 10:13	06/15/14 20:54	
cis-1,3-Dichloropropene	<104	104	ug/Kg	⇒	06/15/14 10:13	06/15/14 20:54	
rans-1,3-Dichloropropene	<104	104	ug/Kg	ត្	06/15/14 10:13	06/15/14 20:54	
Ethylbenzene	<104	104	ug/Kg	⋾	06/15/14 10:13	06/15/14 20:54	
	<104	104	ug/Kg	寺	06/15/14 10:13	06/15/14 20:54	
Hexane	<104	104	ug/Kg	Φ	06/15/14 10:13	06/15/14 20:54	
sopropylbenzene	<104	104	ug/Kg	#	06/15/14 10:13	06/15/14 20:54	
p-Isopropyltoluene	<104	104	ug/Kg	Þ	06/15/14 10:13	06/15/14 20:54	
Methylene Chloride	<261	261	ug/Kg	Ħ	06/15/14 10:13	06/15/14 20:54	
Methyl tert-butyl ether	<104	104	ug/Kg	φ	06/15/14 10:13	06/15/14 20:54	
Naphthalene	<104	104	ug/Kg	ά	06/15/14 10:13	06/15/14 20:54	
Napritialerie N-Propylbenzene	<104	104	ug/Kg	4	06/15/14 10:13	06/15/14 20:54	
				ਹ	06/15/14 10:13	06/15/14 20:54	
Styrene	<104	104	ug/Kg	٠٠ پ			
I,1,1,2-Tetrachloroethane I,1,2,2-Tetrachloroethane	<104 <104	104 104	ug/Kg ug/Kg	‡ *	06/15/14 10:13 06/15/14 10:13	06/15/14 20:54 06/15/14 20:54	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-4 6-7

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-10

Matrix: Soil

Percent Solids: 92.4

1	0	٦	
ı		8	
П		Į	٦

	6	
Т		
		ı

91	٠	
	9	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<104		104		ug/Kg		06/15/14 10:13	06/15/14 20:54	1
Toluene	<104		104		ug/Kg	章	06/15/14 10:13	06/15/14 20:54	3
1,2,3-Trichlorobenzene	<104		104		ug/Kg	☆	06/15/14 10:13	06/15/14 20:54	1
1,2,4-Trichlorobenzene	<104		104		ug/Kg	₽	06/15/14 10:13	06/15/14 20:54	1
1,1,1-Trichloroethane	<104		104		ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	1
1,1,2-Trichloroethane	<104		104		ug/Kg	₽	06/15/14 10:13	06/15/14 20:54	1
Trichloroethene	<104		104		ug/Kg	❖	06/15/14 10:13	06/15/14 20:54	1
Trichlorofluoromethane	<104		104		ug/Kg	∌	06/15/14 10:13	06/15/14 20:54	1
1,2,3-Trichloropropane	<104		104		ug/Kg	Ф	06/15/14 10:13	06/15/14 20:54	1
1,2,4-Trimethylbenzene	<104		104		ug/Kg	₽	06/15/14 10:13	06/15/14 20:54	1
1,3,5-Trimethylbenzene	<104		104		ug/Kg	❖	06/15/14 10:13	06/15/14 20:54	1
Vinyl chloride	<104		104		ug/Kg	\$	06/15/14 10:13	06/15/14 20:54	1
Xylenes, Total	<157		157		ug/Kg	₩	06/15/14 10:13	06/15/14 20:54	1
Bromodichloromethane	<104		104		ug/Kg	э	06/15/14 10:13	06/15/14 20:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		80 - 120				06/15/14 10:13	06/15/14 20:54	1
Dibromofluoromethane (Surr)	91		75 ₋ 125				06/15/14 10:13	06/15/14 20:54	1
Toluene-d8 (Surr)	100		80 - 120				06/15/14 10:13	06/15/14 20:54	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	7.64		0.100		%			06/13/14 14:32	1
Percent Solids	92.4		0.100		%			06/13/14 14:32	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-5 6-7

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-11

Matrix: Soil

Percent Solids: 77.8	

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<618	618	ug/Kg	<u></u>	06/15/14 10:13	06/15/14 21:25	1
Benzene	<124	124	ug/Kg	÷	06/15/14 10:13	06/15/14 21:25	1
Bromobenzene	<124	124	ug/Kg	Ħ	06/15/14 10:13	06/15/14 21:25	1
Bromochloromethane	<124	124	ug/Kg	Ø.	06/15/14 10:13	06/15/14 21:25	1
Bromoform	<124	124	ug/Kg	Ħ	06/15/14 10:13	06/15/14 21:25	1
Bromomethane	<618	618	ug/Kg	♦	06/15/14 10:13	06/15/14 21:25	9
2-Butanone (MEK)	<309	309	ug/Kg	\$	06/15/14 10:13	06/15/14 21:25	9
n-Butylbenzene	<124	124	ug/Kg	⇒	06/15/14 10:13	06/15/14 21:25	1
sec-Butylbenzene	<124	124	ug/Kg	⋾	06/15/14 10:13	06/15/14 21:25	9
tert-Butylbenzene	<124	124	ug/Kg	¢	06/15/14 10:13	06/15/14 21:25	9
Carbon disulfide	<124	124	ug/Kg	\$	06/15/14 10:13	06/15/14 21:25	9
Carbon tetrachloride	<124	124	ug/Kg	i de	06/15/14 10:13	06/15/14 21:25	- 1
Chlorobenzene	<124	124	ug/Kg	ø	06/15/14 10:13	06/15/14 21:25	্ৰ
Chlorodibromomethane	<124	124	ug/Kg	i,	06/15/14 10:13	06/15/14 21:25	11
Chloroethane	<124	124	ug/Kg	φ	06/15/14 10:13	06/15/14 21:25	া
Chloroform	<124	124	ug/Kg	п	06/15/14 10:13	06/15/14 21:25	:1
Chloromethane	<309	309	ug/Kg	ý.	06/15/14 10:13	06/15/14 21:25	- 1
2-Chlorotoluene	<124	124	ug/Kg	⇒	06/15/14 10:13	06/15/14 21:25	ef
4-Chloratoluene	<124	124	ug/Kg	₫¥.	06/15/14 10:13	06/15/14 21:25	33
1,2-Dibromo-3-Chloropropane	<124	124	ug/Kg	並	06/15/14 10:13	06/15/14 21:25	62
1,2-Dibromoethane (EDB)	<124	124	ug/Kg	Ų.	06/15/14 10:13	06/15/14 21:25	10
Dibromomethane	<124	124	ug/Kg	⇒	06/15/14 10:13	06/15/14 21:25	9
1.2-Dichlorobenzene	<124	124	ug/Kg	♦	06/15/14 10:13	06/15/14 21:25	84
1,4-Dichlorobenzene	<124	124	ug/Kg	- 1	06/15/14 10:13	06/15/14 21:25	
1.3-Dichlorobenzene	<124	124	ug/Kg	奇	06/15/14 10:13	06/15/14 21:25	
Dichlorodifluoromethane	<124	124	ug/Kg	Þ	06/15/14 10:13	06/15/14 21:25	
1,1-Dichloroethane	<124	124	ug/Kg	4	06/15/14 10:13	06/15/14 21:25	
1,2-Dichloroethane	<124	124	ug/Kg	⋾	06/15/14 10:13	06/15/14 21:25	1.5
1,1-Dichloroethene	<124	124	ug/Kg	≎	06/15/14 10:13	06/15/14 21:25	
cis-1,2-Dichloroethene	<124	124	ug/Kg	#	06/15/14 10:13	06/15/14 21:25	
trans-1,2-Dichloroethene	<124	124	ug/Kg	点	06/15/14 10:13	06/15/14 21:25	
1,2-Dichloropropane	<124	124	ug/Kg	Þ	06/15/14 10:13	06/15/14 21:25	
1,3-Dichloropropane	<124	124	ug/Kg	φ	06/15/14 10:13	06/15/14 21:25	
2,2-Dichloropropane	<124	124	ug/Kg	25	06/15/14 10:13	06/15/14 21:25	
1,1-Dichloropropene	<124	124	ug/Kg	র্ক	06/15/14 10:13	06/15/14 21:25	
cis-1,3-Dichloropropene	<124	124	ug/Kg	p	06/15/14 10:13	06/15/14 21:25	
trans-1,3-Dichloropropene	<124	124	ug/Kg	ø	06/15/14 10:13	06/15/14 21:25	
Ethylbenzene		124		à	06/15/14 10:13	06/15/14 21:25	
Hexachlorobutadiene	<124 <124	124	ug/Kg	÷	06/15/14 10:13	06/15/14 21:25	
			ug/Kg	÷.	06/15/14 10:13	06/15/14 21:25	
Hexane	<124	124	ug/Kg	ά	06/15/14 10:13	06/15/14 21:25	
Isopropylbenzene	<124	124	ug/Kg	#			
p-Isopropyltoluene	<124	124	ug/Kg		06/15/14 10:13	06/15/14 21:25	
Methylene Chloride	<309	309	ug/Kg		06/15/14 10:13	06/15/14 21:25	
Methyl tert-butyl ether	<124	124	ug/Kg	.⊈ A	06/15/14 10:13	06/15/14 21:25	
Naphthalene	<124	124	ug/Kg	a A	06/15/14 10:13	06/15/14 21:25	
N-Propylbenzene	<124	124	ug/Kg	ن پ	06/15/14 10:13	06/15/14 21:25	
Styrene	<124	124	ug/Kg	ä	06/15/14 10:13	06/15/14 21:25	
1,1,1,2-Tetrachloroethane	<124	124	ug/Kg	<u> </u>	06/15/14 10:13	06/15/14 21:25	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Dil Fac

Client Sample ID: GP-5 6-7 Lab Sample ID: 310-32823-11

Matrix: Soil Percent Solids: 77.8

06/15/14 10:13 06/15/14 21:25

Analyzed

06/13/14 14:32

06/13/14 14:32

Prepared

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Toluene-d8 (Surr)

Percent Moisture

Percent Solids

Analyte

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Tetrachloroethene	<124		124		ug/Kg	≎	06/15/14 10:13	06/15/14 21:25	্ৰ
Toluene	<124		124		ug/Kg	ដុំ	06/15/14 10:13	06/15/14 21:25	1
1,2,3-Trichlorobenzene	<124		124		ug/Kg	≎	06/15/14 10:13	06/15/14 21:25	1
1,2,4-Trichlorobenzene	<124		12 4		ug/Kg	₽	06/15/14 10:13	06/15/14 21:25	1
1,1,1-Trichloroethane	<124		12 4		ug/Kg	₽	06/15/14 10:13	06/15/14 21:25	1
1,1,2-Trichloroethane	<124		124		ug/Kg	₽	06/15/14 10:13	06/15/14 21:25	1
Trichloroethene	<124		124		ug/Kg	¢	06/15/14 10:13	06/15/14 21:25	1
Trichlorofluoromethane	<124		124		ug/Kg	Þ	06/15/14 10:13	06/15/14 21:25	7
1,2,3-Trichloropropane	<124		124		ug/Kg	≑	06/15/14 10:13	06/15/14 21:25	4
1,2,4-Trimethylbenzene	<124		124		ug/Kg	₩	06/15/14 10:13	06/15/14 21:25	1
1,3,5-Trimethylbenzene	<124		124		ug/Kg		06/15/14 10:13	06/15/14 21:25	1
Vinyl chloride	<124		124		ug/Kg	∌	06/15/14 10:13	D6/15/14 21:25	1
Xylenes, Total	<185		185		ug/Kg	₩	06/15/14 10:13	06/15/14 21:25	1
Bromodichloromethane	<124		124		ug/Kg	₽	06/15/14 10:13	06/15/14 21:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		80 - 120				06/15/14 10:13	06/15/14 21:25	1
Dibromofluoromethane (Surr)	92		75 - 125				06/15/14 10:13	06/15/14 21:25	1

80 - 120

RL

0.100

0.100

RL Unit

%

%

98

22.2

77.8

City of Escanaba Brownfield Redevelopment Plan

Result Qualifier

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-6 6-7 Date Collected: 06/10/14 00:00

Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-12

Matrix: Soil

Percent Solids: 81.5

Method: 8260B - Volatile Organi ^{Analyte}	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	<558		558		ug/Kg	= 3	06/15/14 10:13	06/15/14 21:55	
Benzene	<112		112		ug/Kg	Ö	06/15/14 10:13	06/15/14 21:55	
Bromobenzene	<112		112		ug/Kg	ಧ	06/15/14 10:13	06/15/14 21:55	
Bromochloromethane	<112		112		ug/Kg	đ	06/15/14 10:13	06/15/14 21:55	
Bromoform	<112		112		ug/Kg	" φ	06/15/14 10:13	06/15/14 21:55	
Bromomethane	<558	**	558		ug/Kg	♦	06/15/14 10:13	06/15/14 21:55	
2-Butanone (MEK)	<279		279		ug/Kg	4	06/15/14 10:13	06/15/14 21:55	
n-Butylbenzene	<112		112		ug/Kg	÷	06/15/14 10:13	06/15/14 21:55	
sec-Butylbenzene	<112		112		ug/Kg	Þ	06/15/14 10:13	06/15/14 21:55	
ert-Butylbenzene	<112		112		ug/Kg	÷.	06/15/14 10:13	06/15/14 21:55	
Carbon disulfide	<112		112		ug/Kg	ψ	06/15/14 10:13	06/15/14 21:55	
Carbon tetrachloride	<112		112		ug/Kg	Q.	06/15/14 10:13	06/15/14 21:55	
Chlorobenzene	<112		112		ug/Kg	Ф	06/15/14 10:13	06/15/14 21:55	
Chlorodibromomethane	<112		112		ug/Kg	ά	06/15/14 10:13	06/15/14 21:55	
Chloroethane	<112	%	112		ug/Kg	φ	06/15/14 10:13	06/15/14 21:55	
Chloroform	<112		112		ug/Kg	ä	06/15/14 10:13	06/15/14 21:55	
Chloromethane	<279		279		ug/Kg	₹.	06/15/14 10:13	06/15/14 21:55	
-Chlorotoluene	<112		112		ug/Kg	÷	06/15/14 10:13	06/15/14 21:55	
-Chlorotoluene	<112		112		ug/Kg	φ	06/15/14 10:13	06/15/14 21:55	
,2-Dibromo-3-Chloropropane	<112		112		ug/Kg	21	06/15/14 10:13	06/15/14 21:55	
,2-Dibromoethane (EDB)	<112		112		ug/Kg	ψ	06/15/14 10:13	06/15/14 21:55	
ibromomethane	<112		112		ug/Kg	Þ	06/15/14 10:13	06/15/14 21:55	
,2-Dichlorobenzene	<112		112		ug/Kg	÷	06/15/14 10:13	06/15/14 21:55	
,4-Dichlorobenzene	<112		112		ug/Kg	ä	06/15/14 10:13	06/15/14 21:55	
,3-Dichlorobenzene	<112		112		ug/Kg	÷	06/15/14 10:13	06/15/14 21:55	
	<112		112		ug/Kg	Ď	06/15/14 10:13	06/15/14 21:55	
Dichlorodifluoromethane	<112		112			Ģ.	06/15/14 10:13	06/15/14 21:55	
,1-Dichloroethane					ug/Kg	\$	06/15/14 10:13	06/15/14 21:55	
,2-Dichloroethane	<112		112		ug/Kg	*		06/15/14 21:55	
,1-Dichloroethene	<112		112		ug/Kg	***	06/15/14 10:13		
is-1,2-Dichloroethene	<112		112		ug/Kg	4	06/15/14 10:13	06/15/14 21:55	
rans-1,2-Dichloroethene	<112		112		ug/Kg	ä	06/15/14 10:13	06/15/14 21:55	
,2-Dichloropropane	<112		112		ug/Kg		06/15/14 10:13	06/15/14 21:55	
,3-Dichloropropane	<112		112		ug/Kg	\$	06/15/14 10:13	06/15/14 21:55	
2,2-Dichloropropane	<112		112		ug/Kg	*	06/15/14 10:13	06/15/14 21:55	
,1-Dichloropropene	<112		112		ug/Kg	ক ≖	06/15/14 10:13	06/15/14 21:55	
is-1,3-Dichloropropene	<112		112		ug/Kg	⋣	06/15/14 10:13	06/15/14 21:55	
rans-1,3-Dichloropropene	<112		112		ug/Kg	Ţ	06/15/14 10:13	06/15/14 21:55	
Ethylbenzene	<112		112		ug/Kg	\$	06/15/14 10:13	06/15/14 21:55	
lexachlorobutadiene	<112		112		ug/Kg	♦	06/15/14 10:13	06/15/14 21:55	
lexane	<112		112		ug/Kg	٥	06/15/14 10:13	06/15/14 21:55	
sopropylbenzene	<112		112		ug/Kg	7	06/15/14 10:13	06/15/14 21:55	
-Isopropyltoluene	<112		112		ug/Kg	⋾	06/15/14 10:13	06/15/14 21:55	
flethylene Chloride	<279		279		ug/Kg	‡	06/15/14 10:13	06/15/14 21:55	
Methyl tert-butyl ether	<112		112		ug/Kg	4	06/15/14 10:13	06/15/14 21:55	
Naphthalene	<112		112		ug/Kg	Ť.	06/15/14 10:13	06/15/14 21:55	
N-Propylbenzene	<112		112		ug/Kg	¢	06/15/14 10:13	06/15/14 21:55	
Styrene	<112		112		ug/Kg	#	06/15/14 10:13	06/15/14 21:55	
1,1,1,2-Tetrachloroethane	<112		112		ug/Kg	Φ	06/15/14 10:13	06/15/14 21:55	
1,1,2,2-Tetrachloroethane	<112		112		ug/Kg	⋾	06/15/14 10:13	06/15/14 21:55	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-6 6-7

Date Received: 06/13/14 09:12

Date Collected: 06/10/14 00:00

Lab Sample ID: 310-32823-12 Matrix: Soil

Percent Solids: 81.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<112		112		ug/Kg	❖	06/15/14 10:13	06/15/14 21:55	1
Toluene	<112		112		ug/Kg	¢ε	06/15/14 10:13	06/15/14 21:55	1
1,2,3-Trichlorobenzene	<112		112		ug/Kg	₹1	06/15/14 10:13	06/15/14 21:55	1
1,2,4-Trichlorobenzene	<112		112		ug/Kg	₽	06/15/14 10:13	06/15/14 21:55	1
1,1,1-Trichloroethane	<112		112		ug/Kg	⇒	06/15/14 10:13	06/15/14 21:55	1
1,1,2-Trichloroethane	<112		112		ug/Kg	≎	06/15/14 10:13	06/15/14 21:55	1
Trichloroethene	<112		112		ug/Kg	❖	06/15/14 10:13	06/15/14 21:55	1
Trichlorofluoromethane	<112		112		ug/Kg	₽	06/15/14 10:13	06/15/14 21:55	1
1,2,3-Trichloropropane	<112		112		ug/Kg	前	06/15/14 10:13	06/15/14 21:55	1
1,2,4-Trimethylbenzene	<112		112		ug/Kg	≎	06/15/14 10:13	06/15/14 21:55	1
1,3,5-Trimethylbenzene	<112		112		ug/Kg	❖	06/15/14 10:13	06/15/14 21:55	1
Vinyl chloride	<112		112		ug/Kg	≉	06/15/14 10:13	06/15/14 21:55	1
Xylenes, Total	<167		167		ug/Kg	\$₹	06/15/14 10:13	06/15/14 21:55	1
Bromodichloromethane	<112		112		ug/Kg	₽	06/15/14 10:13	06/15/14 21:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80 - 120				06/15/14 10:13	06/15/14 21:55	1
Dibromofluoromethane (Surr)	91		75 - 125				06/15/14 10:13	06/15/14 21:55	1
Toluene-d8 (Surr)	101		80 - 120				06/15/14 10:13	06/15/14 21:55	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	18.5		0.100		%			06/13/14 14:32	1
Percent Solids	81.5		0.100		%			06/13/14 14:32	1

6/24/2014

City of Escanaba Brownfield Redevelopment Plan

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: Meth Blank

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-13

Matrix: Soil

nalyte	anic Compounds (GC/MS) Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
cetone	<500	500	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
Benzene	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
Iromobenzene	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
romochloromethane	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
romoform	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
romomethane	<500 *	500	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
-Butanone (MEK)	<250	250	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
Butylbenzene	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
ec-Butylbenzene	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
rt-Butylbenzene	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
arbon disulfide	<100	100	ug/Kg	(06/15/14 10:13	06/15/14 14:50	
arbon tetrachloride	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
hlorobenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
hlorodibromomethane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
hloroethane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
nloroform	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
nloromethane	<250	250	ug/Kg		06/15/14 10:13	06/15/14 14:50	
Chlorotoluene	<100	100	ug/Kg ug/Kg		06/15/14 10:13	06/15/14 14:50	
						06/15/14 14:50	
Chlorotoluene	<100	100	ug/Kg		06/15/14 10:13		
2-Dibromo-3-Chloropropane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
2-Dibromoethane (EDB)	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
bromomethane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
2-Dichlorobenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
4-Dichlorobenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
3-Dichlorobenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
chlorodifluoromethane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
1-Dichloroethane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
2-Dichloroethane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
1-Dichloroethene	<100	100	ug/Kg	1	06/15/14 10:13	06/15/14 14:50	
-1,2-Dichloroethene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
ins-1,2-Dichloroethene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
2-Dichloropropane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
3-Dichloropropane	<100	100	ug/Kg	,	06/15/14 10:13	06/15/14 14:50	
2-Dichloropropane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
1-Dichloropropene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
-1,3-Dichloropropene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
ans-1,3-Dichloropropene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
hylbenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
exachlorobutadiene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
exane	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
opropylbenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
Isopropyltoluene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
ethylene Chloride	<250	250	ug/Kg		06/15/14 10:13	06/15/14 14:50	
ethyl tert-butyl ether	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
aphthalene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
-Propylbenzene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
rropymenzene grene	<100	100	ug/Kg		06/15/14 10:13	06/15/14 14:50	
1,1,2-Tetrachloroethane					06/15/14 10:13	06/15/14 14:50	
1,1,2-Tetrachloroethane	<100 <100	100 100	ug/Kg ug/Kg		06/15/14 10:13	06/15/14 14:50	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: Meth Blank

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-13

Matrix: Soil

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Toluene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,2,3-Trichlorobenzene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,2,4-Trichlorobenzene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,1,1-Trichloroethane	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,1,2-Trichloroethane	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Trichloroethene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Trichlorofluoromethane	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,2,3-Trichloropropane	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,2,4-Trimethylbenzene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
1,3,5-Trimethylbenzene	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Vinyl chloride	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Xylenes, Total	<150		150		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Bromodichloromethane	<100		100		ug/Kg		06/15/14 10:13	06/15/14 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		80 - 120				06/15/14 10:13	06/15/14 14:50	1
Dibromofluoromethane (Surr)	92		75 ₋ 125				06/15/14 10:13	06/15/14 14:50	1
Toluene-d8 (Surr)	99		80 ₋ 120				06/15/14 10:13	06/15/14 14:50	7

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: HCL Blank

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-14

Matrix: Water

Method: 8260B - Volatile Organ Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	<10.0	10.0	ug/L		06/21/14 08:10	1
Benzene	<0.500	0.500	ug/L		06/21/14 08:10	1
Bromobenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
Bromochloromethane	<5.00	5.00	ug/L		06/21/14 08:10	1
Bromoform	<5.00	5.00	ug/L		06/21/14 08:10	1
Bromomethane	<4.00	4.00	ug/L		06/21/14 08:10	1
2-Butanone (MEK)	<10.0	10.0	ug/L		06/21/14 08:10	1
n-Butylbenzene	<1.00	1,00	ug/L		06/21/14 08:10	1
sec-Butylbenzene	<1.00	1,00	ug/L		06/21/14 08:10	1
tert-Butylbenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
Carbon disulfide	<1.00	1.00	ug/L		06/21/14 08:10	1
Carbon tetrachloride	<2.00	2.00	ug/L		06/21/14 08:10	1
Chlorobenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
Chlorodibromomethane	<5.00	5.00	ug/L		06/21/14 08:10	1
Chloroethane	<4.00	4.00	ug/L		06/21/14 08:10	1
Chloroform	<1_00	1.00	ug/L		06/21/14 08:10	1
Chloromethane	<3.00	3.00	ug/L		06/21/14 08:10	1
2-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 08:10	1
4-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 08:10	1
1,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		06/21/14 08:10	1
1,2-Dibromoethane (EDB)	<10.0	10.0	ug/L		06/21/14 08:10	1
Dibromomethane	<1.00	1,00	ug/L		06/21/14 08:10	1
1.2-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
1,4-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
1,3-Dichlorobenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
Dichlorodifluoromethane	<3.00	3.00	ug/L		06/21/14 08:10	1
1,1-Dichloroethane	<1.00	1.00	ug/L		06/21/14 08:10	1
1,2-Dichloroethane	<1.00	1.00	ug/L		06/21/14 08:10	1
1,1-Dichloroethene	<2.00	2.00	ug/L		06/21/14 08:10	1
cis-1,2-Dichloroethene	<1.00	1,00	ug/L		06/21/14 08:10	1
trans-1,2-Dichloroethene	<1.00	1.00	ug/L		06/21/14 08:10	1
1,2-Dichloropropane	<1.00	1.00	ug/L		06/21/14 08:10	1
1,3-Dichloropropane	<1.00	1.00	ug/L		06/21/14 08:10	
	<4.00	4.00			06/21/14 08:10	1
2,2-Dichloropropane 1,1-Dichloropropene	<1.00	1.00	ug/L		06/21/14 08:10	1
			ug/L			1
cis-1,3-Dichloropropene	<5.00	5.00	ug/L		06/21/14 08:10	
trans-1,3-Dichloropropene	<5.00	5.00	ug/L		06/21/14 08:10	1
Ethylbenzene	<1.00	1.00	ug/L		06/21/14 08:10	1.
Hexachlorobutadiene	<5.00	5.00	ug/L		06/21/14 08:10	1
Hexane	<1.00	1.00	ug/L		06/21/14 08:10	1
Isopropylbenzene	<1.00	1,00	ug/L		06/21/14 08:10	1
p-Isopropyltoluene	<1.00	1.00	ug/L 		06/21/14 08:10	1
Methylene Chloride	<5.00	5.00	ug/L		06/21/14 08:10	1
Methyl tert-butyl ether	<1.00	1.00	ug/L		06/21/14 08:10	1
Naphthalene	<5.00	5.00	ug/L		06/21/14 08:10	1
N-Propylbenzene	<1.00	1.00	ug/L		06/21/14 08:10	1
Styrene	<1.00	1.00	ug/L		06/21/14 08:10	31
1,1,1,2-Tetrachloroethane	<1.00	1.00	ug/L		06/21/14 08:10	1
1,1,2,2-Tetrachloroethane	<1.00	1.00	ug/L		06/21/14 08:10	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: HCL Blank

Lab Sample ID: 310-32823-14

Matrix: Water

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	<1.00		1.00		ug/L			06/21/14 08:10	1
Toluene	<1.00		1.00		ug/L			06/21/14 08:10	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 08:10	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			06/21/14 08:10	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			06/21/14 08:10	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			06/21/14 08:10	1
Trichloroethene	<1.00		1.00		ug/L			06/21/14 08:10	1
Trichlorofluoromethane	<4.00		4.00		ug/L			06/21/14 08:10	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			06/21/14 08:10	া
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 08:10	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			06/21/14 08:10	1
Vinyl chloride	<1.00		1,00		ug/L			06/21/14 08:10	1
Xylenes, Total	<3.00		3.00		ug/L			06/21/14 08:10	1
Bromodichloromethane	<1.00		1,00		ug/L			06/21/14 08:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		75 - 110					06/21/14 08:10	1
Dibromofluoromethane (Surr)	107		75 - 120					06/21/14 08:10	1
Toluene-d8 (Surr)	97		80 ₋ 120					06/21/14 08:10	1

TestAmerica Cedar Falls

6/24/2014

11/01/2012

Definitions/Glossary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

LCS or LCSD exceeds the control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Line do and a should be seen as a decimal and a should be seen as a decimal and a should be seen as a shou

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Surrogate Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Ground Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		BFB	DBFM	TOL					
ab Sample ID	Client Sample ID	(75-110)	(75-120)	(80-120)					
10-32823-1	GP-1	103	108	100					
10-32823-2	GP-2	101	109	97					
10-32823-3	GP-3	97	107	100					
10-32823-4	GP-4	97	112	99					
10-32823-5	GP-5	98	108	99					
10-32823-6	GP-6	104	107	100					

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Soil Prep Type: Total/NA

				Percent Surrog	jate Recovery (Acceptance Limits)
		BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(80-120)	(75-125)	(80-120)	
310-32823-7	GP-1 7.5-8	93	95	98	
310-32823-8	GP-2 7.5-8	93	94	99	
310-32823-9	GP-3 6.5-7.5	94	94	100	
310-32823-10	GP-4 6-7	93	91	100	
310-32823-11	GP-5 6-7	91	92	98	
310-32823-12	GP-6 6-7	95	91	101	
310-32823-13	Meth Blank	93	92	99	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

				Percent Su
		BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(80-120)	(75-125)	(80-120)
LCS 310-51459/2-A	Lab Control Sample	93	97	100
LCSD 310-51459/3-A	Lab Control Sample Dup	92	100	99
MB 310-51459/1-A	Method Blank	90	94	98

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Suπ)

Surrogate Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		BFB	DBFM	TOL						
ab Sample ID	Client Sample ID	(75-110)	(75-120)	(80-120)						
310-32823-14	HCL Blank	101	107	97						
CS 310-52092/6	Lab Control Sample	100	106	99						
CS 310-52108/6	Lab Control Sample	95	111	98						
MB 310-52092/5	Method Blank	102	106	100						
MB 310-52108/5	Method Blank	104	107	99						
Surrogate Legend										

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Suπ)

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 310-51459/1-A

Matrix: Solid

Analysis Batch: 51461

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 51459

	MB ME	3					
Analyte	Result Qu	alifier RL	MDL Unit	D Pre	pared	Analyzed	Dil Fac
Acetone	<488	488	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Benzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Bromobenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Bromochloromethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Bromoform	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Bromomethane	<488	488	ug/Kg	06/15/	14 10:13	06/15/14 12:49	i
2-Butanone (MEK)	<244	244	ug/Kg	06/15/	14 10:13	06/15/14 12:49	ä
n-Butylbenzene	<97,6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
sec-Butylbenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
tert-Butylbenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	3
Carbon disulfide	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Carbon tetrachloride	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Chlorobenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Chlorodibromomethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Chloroethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	4
Chloroform	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	à
Chloromethane	<244	244	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
2-Chlorotoluene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	i
4-Chlorotoluene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	4
1,2-Dibromo-3-Chloropropane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
1,2-Dibromoethane (EDB)	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	ř
Dibromomethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	Ä
I,2-Dichlorobenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	
I,4-Dichlorobenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
1,3-Dichlorobenzene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Dichlorodifluoromethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
1,1-Dichloroethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
I,2-Dichloroethane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	4
1,1-Dichloroethene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
cis-1,2-Dichloroethene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
trans-1,2-Dichloroethene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	9
1,2-Dichloropropane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	3
1,3-Dichloropropane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	à
2,2-Dichloropropane	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	â
1,1-Dichloropropene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	i
cis-1,3-Dichloropropene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
rans-1,3-Dichloropropene	<97.6	97.6	ug/Kg	06/15/	14 10:13	06/15/14 12:49	1
Ethylbenzene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	9
- Hexachlorobutadiene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	1
Hexane	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	1
sopropylbenzene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	8
-Isopropyltoluene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	
Methylene Chloride	<244	244	ug/Kg		14 10:13	06/15/14 12:49	7
Methyl tert-butyl ether	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	7
Naphthalene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	9
N-Propylbenzene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	1
Styrene	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	
1,1,1,2-Tetrachloroethane	<97.6	97.6	ug/Kg		14 10:13	06/15/14 12:49	4

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI

TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MD MD

Lab Sample ID: MB 310-51459/1-A

Lab Sample ID: LCS 310-51459/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 51461

Client Sample ID: Method Blank
Prep Type: Total/NA
Down D.4-1- E44E0

Prep Batch: 51459

	MR	WB					
Analyte	Result	Qualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
Tetrachloroethene	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
Toluene	<97.6	97_6	ug/Kg		06/15/14 10:13	06/15/14 12:49	4
1,2,3-Trichlorobenzene	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	া
1,2,4-Trichlorobenzene	<97,6	97,6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
1,1,1-Trichloroethane	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
1,1,2-Trichloroethane	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
Trichloroethene	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
Trichlorofluoromethane	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
1,2,3-Trichloropropane	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
1,2,4-Trimethylbenzene	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
1,3,5-Trimethylbenzene	<97.6	97,6	ug/Kg		06/15/14 10:13	06/15/14 12:49	9
Vinyl chloride	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	9
Xylenes, Total	<146	146	ug/Kg		06/15/14 10:13	06/15/14 12:49	1
Bromodichloromethane	<97.6	97.6	ug/Kg		06/15/14 10:13	06/15/14 12:49	7,6
	***	440					

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		80 - 120	06/15/14 10:13	06/15/14 12:49	7
Dibromofluoromethane (Surr)	94		75 ₋ 125	06/15/14 10:13	06/15/14 12:49	1
Toluene-d8 (Surr)	98		80 - 120	06/15/14 10:13	06/15/14 12:49	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 51459

							op .ypo.	· Occimin
Analysis Batch: 51461							Prep Bato	h: 51459
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	1940	1603		ug/Kg		83	65 _ 150	- :
Benzene	970	991.9		ug/Kg		102	55 ₋ 135	
Bromobenzene	970	900.0		ug/Kg		93	65 _ 125	
Bromochloromethane	970	931.0		ug/Kg		96	65 - 130	
Bromoform	970	840.2		ug/Kg		87	50 - 135	
Bromomethane	970	1727	9 3 3	ug/Kg		178	45 _ 135	
2-Butanone (MEK)	1940	1590		ug/Kg		82	50 - 145	
n-Butylbenzene	970	881.1		ug/Kg		91	55 - 130	
sec-Butylbenzene	970	910.1		ug/Kg		94	60 - 125	
tert-Butylbenzene	970	896.5		ug/Kg		92	55 - 125	
Carbon disulfide	970	918.2		ug/Kg		95	40 - 135	
Carbon tetrachloride	970	914.5		ug/Kg		94	55 - 130	
Chlorobenzene	970	936.4		ug/Kg		97	60 _ 120	
Chlorodibromomethane	970	847.2		ug/Kg		87	55 _ 130	
Chloroethane	970	1825	•	ug/Kg		188	50 _ 145	
Chloroform	970	903.1		ug/Kg		93	65 _ 130	
Chloromethane	970	1003		ug/Kg		103	40 - 135	
2-Chlorotoluene	970	934.0		ug/Kg		96	60 - 125	
4-Chlorotoluene	970	939.4		ug/Kg		97	60 - 125	
1,2-Dibromo-3-Chloropropane	970	789.5		ug/Kg		81	50 _ 140	
1,2-Dibromoethane (EDB)	970	864.8		ug/Kg		89	55 _ 140	
Dibromomethane	970	838.3		ug/Kg		86	65 _ 135	

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

F		
Н		

9	

۱	ė	

Method: 8260B -	Volatile •	Organic	Compounds	(GC/MS)	(Continued)
-----------------	------------	---------	-----------	---------	-------------

Lab Sample ID: LCS 310-51	459/2-A						Client	t Sample	ID: Lab Control Sample
Matrix: Solid									Prep Type: Total/N
Analysis Batch: 51461			Onite	1.00	1.00				Prep Batch: 5145
Analyte			Spike Added		LCS	I I—ia		0/ D	%Rec.
1,2-Dichlorobenzene			970	900.0	Qualifier	Unit	D	%Rec 93	Limits
1.4-Dichlorobenzene			970	927.7		ug/Kg			65 - 120
1,3-Dichlorobenzene			970	902.7		ug/Kg		96	60 - 125
Dichlorodifluoromethane			970	933.3		ug/Kg		93	60 _ 125
1,1-Dichloroethane						ug/Kg		96	40 - 135
1,2-Dichloroethane			970 970	935.2		ug/Kg		96	55 ₋ 135
1.1-Dichloroethene			970	841.3		ug/Kg		87 100	60 <u>-</u> 140
cis-1,2-Dichloroethene			970	989.9 971.7		ug/Kg		102	50 - 145
trans-1,2-Dichloroethene						ug/Kg		100	60 - 135
1,2-Dichloropropane			970 970	985.3		ug/Kg		102	55 - 135
1,3-Dichloropropane				914.7		ug/Kg		94	55 ₋ 130
2,2-Dichloropropane			970	874.0		ug/Kg		90	55 - 140
1,1-Dichloropropane			970 970	888.5		ug/Kg		92	40 - 135
cis-1,3-Dichloropropene			970	907.5		ug/Kg		94	55 ₋ 130
trans-1,3-Dichloropropene				903.7		ug/Kg		93	50 _ 115
Ethylbenzene			970	837.0		ug/Kg		86	55 ₋ 130
Hexachlorobutadiene			970 970	968.5		ug/Kg		100	60 - 125
Hexane			970	950.0 886.1		ug/Kg		98	40 - 135
Isopropylbenzene			970	906.6		ug/Kg		91	45 ₋ 140
p-Isopropyltoluene			970	904.4		ug/Kg		94 93	60 ₋ 125 60 ₋ 120
Methylene Chloride			970	910.9		ug/Kg			
Methyl tert-butyl ether			970	906.6		ug/Kg		94 94	55 ₋ 145
Naphthalene			970	875.3		ug/Kg		90	55 - 130
N-Propylbenzene			970	900.4		ug/Kg			50 - 130
Styrene			970	919.4		ug/Kg ug/Kg		93 95	50 ₋ 125 60 ₋ 125
1,1,1,2-Tetrachloroethane			970	864.4		ug/Kg		89	65 - 125
1,1,2,2-Tetrachloroethane			970	764.6		ug/Kg ug/Kg		79	60 - 125
Tetrachloroethene			970	965.7		ug/Kg		100	55 - 125
Toluene			970	1001		ug/Kg ug/Kg		103	60 - 130
1,2,3-Trichlorobenzene			970	859.6		ug/Kg		89	50 - 130
1,2,4-Trichlorobenzene			970	867.8		ug/Kg ug/Kg		90	45 - 135
1,1,1-Trichloroethane			970	906.0		ug/Kg		93	60 - 125
1,1,2-Trichloroethane			970	853.2		ug/Kg		88	55 ₋ 135
Trichloroethene			970	943.0		ug/Kg ug/Kg		97	60 - 130
Trichlorofluoromethane			970	1109		ug/Kg		114	50 ₋ 145
1,2,3-Trichloropropane			970	781.2		ug/Kg		81	50 ₋ 145
1,2,4-Trimethylbenzene			970	909.3		ug/Kg		94	55 ₋ 125
1,3,5-Trimethylbenzene			970	925.1		ug/Kg		95	50 - 130
Vinyl chloride			970	944.8		ug/Kg ug/Kg		97	45 - 140
Xylenes, Total			1940	1832		ug/Kg ug/Kg		94	50 - 130
Bromodichloromethane			970	868.2		ug/Kg ug/Kg		90	65 - 130
			0,0	000.2		ug,1\g		30	00-100
		LCS							
Surrogate	%Recovery	Qualifier	Limits						
4-Bromofluorobenzene (Surr)	93		80 - 120						
Dibromofluoromethane (Surr)	97		75 - 125						
Toluene-d8 (Surr)	100		80 120						

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	97		75 - 125
Toluene-d8 (Surr)	100		80 ₋ 120

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 310-51459/3-A Matrix: Solid			CII	ent Sample ID:		ype: To	
Analysis Batch: 51461						Batch:	
maryolo Batolii 01401	Spike	LCSD	LCSD		%Rec.	Daton.	RPE
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limi
Acetone	1980	1707	ug/Kg	86	65 - 150	6	40
Benzene	989	1029	ug/Kg	104	55 - 135	4	25
Bromobenzene	989	941.0	ug/Kg	95	65 - 125	4	35
Bromochloromethane	989	1029	ug/Kg	104	65 _ 130	10	35
Bromoform	989	794.3	ug/Kg	80	50 - 135	6	40
Bromomethane	989	1911	ug/Kg	193	45 _ 135	10	40
2-Butanone (MEK)	1980	1628	ug/Kg	82	50 - 145	2	41
n-Butylbenzene	989	873.9	ug/Kg	88	55 - 130	1	3
sec-Butylbenzene	989	924.9	ug/Kg	94	60 - 125	2	3
ert-Butylbenzene	989	916.3	ug/Kg	93	55 ₋ 125	2	2
Carbon disulfide	989	949.0	ug/Kg	96	40 - 135	3	40
Carbon tetrachloride	989	986.1	ug/Kg	100	55 _ 130	8	30
Chlorobenzene	989	962.1	ug/Kg	97	60 - 120	3	30
Chlorodibromomethane	989	844.8	ug/Kg	85	55 - 130	0	40
Chloroethane	989	1821	ug/Kg	184	50 - 145	0	4
Chloroform	989	959.1	ug/Kg	97	65 - 130	6	3
Chloromethane	989	1028	ug/Kg	104	40 - 135	2	4
2-Chiorotoluene	989	940.4	ug/Kg	95	60 - 125	1	3
-Chlorotoluene	989	952.8	ug/Kg	96	60 - 125	1	3
,2-Dibromo-3-Chloropropane	989	733.7	ug/Kg	74	50 - 140	7	3
,2-Dibromoethane (EDB)	989	885.6	ug/Kg	90	55 - 140	2	3
Dibromomethane	989	924.8	ug/Kg	94	65 - 135	10	3
,2-Dichlorobenzene	989	920.9	ug/Kg	93	65 - 120	2	3
,4-Dichlorobenzene	989	958.6	ug/Kg	97	60 - 125	3	3
,3-Dichlorobenzene	989	934.8	ug/Kg	95	60 - 125	3	3
Dichlorodifluoromethane	989	959.0	ug/Kg	97	40 - 135	3	3
,1-Dichloroethane	989	988.8	ug/Kg	100	55 - 135	6	4
,2-Dichloroethane	989	895.3	ug/Kg	91	60 - 140	6	3
,1-Dichloroethene	989	1045	ug/Kg	106	50 - 145	5	4
is-1,2-Dichloroethene	989	1001	ug/Kg	101	60 - 135	3	4
rans-1,2-Dichloroethene	989	1041	ug/Kg	105	55 ₋ 135	6	4
,2-Dichloropropane	989	963.0	ug/Kg	97	55 ₋ 130	5	3
,3-Dichloropropane	989	912.1	ug/Kg	92	55 - 140	4	3
2,2-Dichloropropane	989	949.7	ug/Kg	96	40 - 135	7	4
,1-Dichloropropene	989	959.6	ug/Kg	97	55 ₋ 130	6	3
is-1,3-Dichloropropene	989	955.2	ug/Kg	97	50 ₋ 115	6	3
rans-1,3-Dichloropropene	989	865.7	ug/Kg	88	55 - 130	3	3
Ethylbenzene	989	992.9	ug/Kg	100	60 - 125	2	3
lexachlorobutadiene	989	936.4	ug/Kg	95	40 - 135	1	3
lexane	989	908.5	ug/Kg	92	45 - 140	2	3
sopropylbenzene	989	940.7	ug/Kg	95	60 _ 125	4	3
-IsopropyItoluene	989	928.7	ug/Kg	94	60 - 120	3	3
flethylene Chloride	989	962.0	ug/Kg	97	55 ₋ 145	5	4
flethyl tert-butyl ether	989	940.6	ug/Kg	95	55 ₋ 130	4	3
laphthalene	989	902.3	ug/Kg	91	50 - 130	3	3
i-Propylbenzene	989	938.2	ug/Kg	95	50 ₋ 125	4	3
Styrene	989	956.4	ug/Kg	97	60 _ 125	4	3
,1,1,2-Tetrachloroethane	989	940.1	ug/Kg	95	65 - 125	8	3

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI

TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Analysis Batch: 51461 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 51459

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2,2-Tetrachloroethane	989	833,9		ug/Kg		84	60 - 125	9	35
Tetrachloroethene	989	988.6		ug/Kg		100	55 - 125	2	40
Toluene	989	1029		ug/Kg		104	60 - 130	3	35
1,2,3-Trichlorobenzene	989	887.7		ug/Kg		90	50 - 130	3	35
1,2,4-Trichlorobenzene	989	895.0		ug/Kg		91	45 - 135	3	35
1,1,1-Trichloroethane	989	937.7		ug/Kg		95	60 - 125	3	30
1,1,2-Trichloroethane	989	894.5		ug/Kg		90	55 - 135	5	30
Trichloraethene	989	975.4		ug/Kg		99	60 _ 130	3	30
Trichlorofluoromethane	989	1145		ug/Kg		116	50 - 145	3	40
1,2,3-Trichloropropane	989	843,3		ug/Kg		85	50 _ 145	8	35
1,2,4-Trimethylbenzene	989	950.9		ug/Kg		96	55 - 125	4	35
1,3,5-Trimethylbenzene	989	939.3		ug/Kg		95	50 - 130	2	35
Vinyl chloride	989	946.6		ug/Kg		96	45 - 140	0	40
Xylenes, Total	1980	1890		ug/Kg		96	50 - 130	3	30
Bromodichloromethane	989	896.5		ug/Kg		91	65 _ 130	3	30

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		80 - 120
Dibromofluoromethane (Surr)	100		75 - 125
Toluene-d8 (Surr)	99		80 - 120

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Lab Sample ID: MB 310-52092/5

Analysis Batch: 52092								
	MB	MB						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10.0	10.0		ug/L			06/20/14 15:24	1
Benzene	<0.500	0.500		ug/L			06/20/14 15:24	1
Bromobenzene	<1.00	1.00		ug/L			06/20/14 15:24	1
Bromochloromethane	<5.00	5.00		ug/L			06/20/14 15:24	1
Bromoform	<5.00	5.00		ug/L			06/20/14 15:24	1
Bromomethane	<4.00	4,00		ug/L			06/20/14 15:24	1
2-Butanone (MEK)	<10.0	10.0		ug/L			06/20/14 15:24	1
n-Butylbenzene	<1.00	1.00		ug/L			06/20/14 15:24	1
sec-Butylbenzene	<1.00	1.00		ug/L			06/20/14 15:24	1
tert-Butylbenzene	<1.00	1.00		ug/L			06/20/14 15:24	1
Carbon disulfide	<1.00	1.00		ug/L			06/20/14 15:24	1
Carbon tetrachloride	<2.00	2.00		ug/L			06/20/14 15:24	1
Chlorobenzene	<1.00	1.00		ug/L			06/20/14 15:24	1
Chlorodibromomethane	<5.00	5.00		ug/L			06/20/14 15:24	1
Chloroethane	<4.00	4.00		ug/L			06/20/14 15:24	1
Chloroform	<1.00	1.00		ug/L			06/20/14 15:24	1
Chloromethane	<3.00	3.00		ug/L			06/20/14 15:24	1
2-Chlorotoluene	<1.00	1.00		ug/L			06/20/14 15:24	1
4-Chlorotoluene	<1.00	1.00		ug/L			06/20/14 15:24	1
1,2-Dibromo-3-Chloropropane	<10.0	10.0		ug/L			06/20/14 15:24	1
1,2-Dibromoethane (EDB)	<10.0	10.0		ug/L			06/20/14 15:24	1
Dibromomethane	<1.00	1.00		ug/L			06/20/14 15:24	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI

4-Bromofluorobenzene (Suπ)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

TestAmerica Job ID: 310-32823-1 SDG: W14-0447

4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 310-52092/5

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

	~	
	u.	
×	٠.	

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
1,4-Dichlorobenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
1,3-Dichlorobenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
Dichlorodifluoromethane	<3.00	3	1,00	ug/L			06/20/14 15:24	
1,1-Dichloroethane	<1.00	1	.00	ug/L			06/20/14 15:24	
1,2-Dichloroethane	<1.00	1	.00	ug/L			06/20/14 15:24	
1,1-Dichloroethene	<2.00	2	2.00	ug/L			06/20/14 15:24	
cis-1,2-Dichloroethene	<1.00	1	.00	ug/L			06/20/14 15:24	
rans-1,2-Dichloroethene	<1.00	1	.00	ug/L			06/20/14 15:24	
1,2-Dichloropropane	<1.00	1	.00	ug/L			06/20/14 15:24	
1,3-Dichloropropane	<1.00	1	.00	ug/L			06/20/14 15:24	
2,2-Dichloropropane	<4.00	4	.00	ug/L			06/20/14 15:24	
I,1-Dichloropropene	<1.00	1	.00	ug/L			06/20/14 15:24	
sis-1,3-Dichloropropene	<5.00	5	.00	ug/L			06/20/14 15:24	
rans-1,3-Dichloropropene	<5.00	5	.00	ug/L			06/20/14 15:24	
Ethylbenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
lexachlorobutadiene	<5.00	5	.00	ug/L			06/20/14 15:24	
lexane	<1.00	1	.00	ug/L			06/20/14 15:24	
sopropylbenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
-Isopropyltoluene	<1.00	1	.00	ug/L			06/20/14 15:24	
lethylene Chloride	<5.00	5	.00	ug/L			06/20/14 15:24	
flethyl tert-butyl ether	<1.00	1	.00	ug/L			06/20/14 15:24	
laphthalene	<5.00	5	00,	ug/L			06/20/14 15:24	
I-Propylbenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
Styrene	<1.00	1	.00	ug/L			06/20/14 15:24	
,1,1,2-Tetrachloroethane	<1.00	1	.00	ug/L			06/20/14 15:24	
1,1,2,2-Tetrachloroethane	<1.00	1	.00	ug/L			06/20/14 15:24	
[etrachloroethene	<1.00	1	.00	ug/L			06/20/14 15:24	
oluene	<1.00	1	.00	ug/L			06/20/14 15:24	
,2,3-Trichlorobenzene	<5.00	5	.00	ug/L			06/20/14 15:24	
,2,4-Trichlorobenzene	<5.00	5	.00	ug/L			06/20/14 15:24	
I,1,1-Trichloroethane	<1.00	1	.00	ug/L			06/20/14 15:24	
,1,2-Trichloroethane	<1.00	1	.00	ug/L			06/20/14 15:24	
richloroethene	<1.00	1	,00	ug/L			06/20/14 15:24	
richlorofluoromethane	<4.00	4	.00	ug/L			06/20/14 15:24	
,2,3-Trichloropropane	<1.00	1	.00	ug/L			06/20/14 15:24	
,2,4-Trimethylbenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
,3,5-Trimethylbenzene	<1.00	1	.00	ug/L			06/20/14 15:24	
'inyl chloride	<1.00	1	-00	ug/L			06/20/14 15:24	
(ylenes, Total	<3.00	3	.00	ug/L			06/20/14 15:24	
romodichloromethane	<1.00	1	.00	ug/L			06/20/14 15:24	
ii.	MB	МВ						
Surrogate	%Recovery	Qualifier Limits				Prepared	Analyzed	Dil Fa

TestAmerica	Cedar	Falls

06/20/14 15:24

06/20/14 15:24

06/20/14 15:24

75 - 110

75 - 120

80 - 120

1

102

106

100

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

14-0447

8910

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 310-52092/6 Matrix: Water					Client Sample	e ID: Lab Control Sa Prep Type: Tota
Analysis Batch: 52092						ricp Type. roa
Analysis batch. 52052	Spike	LCS	LCS			%Rec.
Analyte	Added		Qualifier	Unit	D %Rec	Limits
Acetone	40.0	38.25		ug/L	96	60 - 150
Benzene	20.0	16.34		ug/L	82	70 - 130
Bromobenzene	20.0	17.07		ug/L	85	75 - 130
Bromochloromethane	20.0	18.19		ug/L	91	65 _ 145
Bromoform	20.0	17.02		ug/L	85	30 - 125
Bromomethane	20.0	18.55		ug/L	93	35 - 130
2-Butanone (MEK)	40.0	37.58		ug/L	94	55 - 140
n-Butylbenzene	20.0	16.42		ug/L	82	55 - 135
sec-Butylbenzene	20.0	16.68		ug/L	83	65 - 135
tert-Butylbenzene	20.0	16.66		ug/L	83	60 - 135
Carbon disulfide	20.0	16.08		ug/L	80	40 - 130
Carbon tetrachloride	20.0	19.02		ug/L	95	55 - 130
Chlorobenzene	20.0	16.85		ug/L	84	75 - 125
Chlorodibromomethane	20.0	16.89		-	84	45 - 125
Chloroethane	20.0	17.85		ug/L		55 ₋ 135
Chloroform	20.0	17.65		ug/L	89	70 ₋ 125
Chloromethane	20.0	15.92		ug/L	86	
2-Chlorotoluene	20.0			ug/L	80	30 - 125
4-Chlorotoluene		16.96		ug/L	85	75 <u>-</u> 135
1,2-Dibromo-3-Chloropropane	20.0	17.43		ug/L	87	70 - 140
	20.0	16.90		ug/L	85	35 - 130
1,2-Dibromoethane (EDB)	20.0	16.98		ug/L	85	70 ₋ 135
Dibromomethane	20.0	17.31		ug/L	87	75 - 130
1,2-Dichlorobenzene	20.0	16.61		ug/L	83	65 _ 135
1,4-Dichlorobenzene	20.0	16.44		ug/L	82	60 - 140
1,3-Dichlorobenzene	20.0	16.80		ug/L	84	70 - 130
Dichlorodifluoromethane	20.0	18.54		ug/L	93	35 _ 130
1,1-Dichloroethane	20.0	16.70		ug/L	83	60 - 130
1,2-Dichloroethane	20.0	18.66		ug/L	93	65 - 140
1,1-Dichloroethene	20.0	17.65		ug/L	88	60 - 135
cis-1,2-Dichloroethene	20.0	17.40		ug/L	87	70 - 135
rans-1,2-Dichloroethene	20.0	17.03		ug/L 	85	60 - 145
1,2-Dichloropropane	20.0	16.31		ug/L	82	65 _ 130
1,3-Dichloropropane	20.0	17.24		ug/L	86	75 - 12 5
2,2-Dichloropropane	20.0	18.46		ug/L	92	25 _ 120
1,1-Dichloropropene	20.0	16.10		ug/L 	80	60 _ 140
cis-1,3-Dichloropropene	20.0	16.89		ug/L	84	30 _ 120
rans-1,3-Dichloropropene	20.0	15.39		ug/L	77	35 _ 120
Ethylbenzene	20.0	17.12		ug/L	86	70 - 130
Hexachlorobutadiene	20.0	16.45		ug/L	82	60 - 135
Hexane	20.0	17.12		ug/L	86	40 - 135
sopropylbenzene	20.0	17.17		ug/L	86	70 - 125
p-Isopropyltoluene	20.0	17.27		ug/L	86	60 - 140
Methylene Chloride	20,0	17.98		ug/L	90	55 ₋ 145
Methyl tert-butyl ether	20.0	17.58		ug/L	88	50 _ 135
Naphthalene	20,0	15.22		ug/L	76	40 _ 135
N-Propylbenzene	20.0	17.29		ug/L	86	70 - 135
Styrene	20.0	17.44		ug/L	87	70 - 130
1,1,1,2-Tetrachloroethane	20.0	17.52		ug/L	88	65 - 120

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

Z

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 310-52092/6

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 52092

	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Un	it D %Rec	Limits	
1,1,2,2-Tetrachloroethane	20.0	16.26	ug	L 81	65 _ 130	
Tetrachloroethene	20.0	16.81	ug	'L 84	70 ₋ 135	
Toluene	20.0	16.56	ug	'L 83	70 - 135	
1,2,3-Trichlorobenzene	20.0	16.04	ug	'L 80	55 _ 130	
1,2,4-Trichlorobenzene	20.0	16.05	ug	'L 80	40 - 135	
1,1,1-Trichloroethane	20,0	18.78	ug	'L 94	60 - 125	
1,1,2-Trichloroethane	20.0	17.51	ug	'L 88	75 <u>-</u> 125	
Trichloroethene	20.0	16.72	ug	'L 84	70 _ 130	
Trichlorofluoromethane	20.0	20.06	ug	'L 100	55 - 145	
1,2,3-Trichloropropane	20.0	16.67	ug	'L 83	60 _ 150	
1,2,4-Trimethylbenzene	20.0	17.02	ug	'L 85	70 - 140	
1,3,5-Trimethylbenzene	20.0	17.36	ug	'L 87	70 - 140	
Vinyl chloride	20.0	16.79	ug	'L 84	45 - 135	
Xylenes, Total	40.0	33,19	ug	L 83	70 - 130	
Bromodichloromethane	20.0	17.70	ug	'L 89	60 - 130	

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofiuorobenzene (Surr)
 100
 75 - 110

 Dibromofiuoromethane (Surr)
 106
 75 - 120

 Toluene-d8 (Surr)
 99
 80 - 120

Lab Sample ID: MB 310-52108/5

Matrix: Water

Analysis Batch: 52108

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB				
Analyte	Result	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	<10.0	10.0	ug/L		06/21/14 03:52	1
Benzene	<0.500	0.500	ug/L		06/21/14 03:52	1
Bromobenzene	<1.00	1.00	ug/L		06/21/14 03:52	1
Bromochloromethane	<5.00	5.00	ug/L		06/21/14 03:52	1
Bromoform	<5.00	5.00	ug/L		06/21/14 03:52	1
Bromomethane	<4.00	4.00	ug/L		06/21/14 03:52	1
2-Butanone (MEK)	<10.0	10.0	ug/L		06/21/14 03:52	9
n-Butylbenzene	<1.00	1.00	ug/L		06/21/14 03:52	1
sec-Butylbenzene	<1.00	1.00	ug/L		06/21/14 03:52	1
tert-Butylbenzene	<1.00	1.00	ug/L		06/21/14 03:52	9
Carbon disulfide	<1.00	1.00	ug/L		06/21/14 03:52	1
Carbon tetrachloride	<2.00	2.00	ug/L		06/21/14 03:52	-1
Chlorobenzene	<1.00	1.00	ug/L		06/21/14 03:52	1
Chlorodibromomethane	<5.00	5.00	ug/L		06/21/14 03:52	4
Chloroethane	<4.00	4.00	ug/L		06/21/14 03:52	1
Chloroform	<1.00	1.00	ug/L		06/21/14 03:52	- 1
Chloromethane	<3.00	3.00	ug/L		06/21/14 03:52	- 1
2-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 03:52	া
4-Chlorotoluene	<1.00	1.00	ug/L		06/21/14 03:52	4
1,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		06/21/14 03:52	1
1,2-Dibromoethane (EDB)	<10.0	10.0	ug/L		06/21/14 03:52	1
Dibromomethane	<1.00	1.00	ug/L		06/21/14 03:52	4

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1 SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 310-52108/5	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 52108	
MR MR	

	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorobenzene	<1.00		1.00	ug/L			06/21/14 03:52	
1,4-Dichlorobenzene	<1.00		1.00	ug/L			06/21/14 03:52	i
1,3-Dichlorobenzene	<1.00		1.00	ug/L			06/21/14 03:52	1
Dichlorodifluoromethane	<3.00		3.00	ug/L			06/21/14 03:52	
1,1-Dichloroethane	<1.00		1.00	ug/L			06/21/14 03:52	-
1,2-Dichloroethane	<1.00		1.00	ug/L			06/21/14 03:52	
1,1-Dichloroethene	<2.00		2.00	ug/L			06/21/14 03:52	1
cis-1,2-Dichloroethene	<1.00		1.00	ug/L			06/21/14 03:52	1
trans-1,2-Dichloroethene	<1.00		1.00	ug/L			06/21/14 03:52	1
1,2-Dichloropropane	<1.00		1.00	ug/L			06/21/14 03:52	
1,3-Dichloropropane	<1.00		1.00	ug/L			06/21/14 03:52	
2,2-Dichloropropane	<4.00		4.00	ug/L			06/21/14 03:52	
1,1-Dichloropropene	<1.00		1.00	ug/L			06/21/14 03:52	
cis-1,3-Dichloropropene	<5.00		5.00	ug/L			06/21/14 03:52	
rans-1,3-Dichloropropene	<5.00		5.00	ug/L			06/21/14 03:52	
Ethylbenzene	<1.00		1.00	ug/L			06/21/14 03:52	-
Hexachlorobutadiene	<5.00		5.00	ug/L			06/21/14 03:52	3
Hexane	<1.00		1.00	ug/L			06/21/14 03:52	
sopropylbenzene	<1.00		1.00	ug/L			06/21/14 03:52	
-Isopropyltoluene	<1.00		1.00	ug/L			06/21/14 03:52	
fethylene Chloride	<5.00		5.00	ug/L			06/21/14 03:52	1
fethyl tert-butyl ether	<1.00		1.00	ug/L			06/21/14 03:52	1
Naphthalene	<5.00		5.00	ug/L			06/21/14 03:52	
I-Propylbenzene	<1.00		1.00	ug/L			06/21/14 03:52	
Styrene	<1.00		1.00	ug/L			06/21/14 03:52	
1,1,1,2-Tetrachloroethane	<1.00		1.00	ug/L			06/21/14 03:52	
1,1,2,2-Tetrachloroethane	<1.00		1.00	ug/L			06/21/14 03:52	
Tetrachloroethene	<1.00		1.00	ug/L			06/21/14 03:52	
Toluene	<1.00		1.00	ug/L			06/21/14 03:52	
1,2,3-Trichlorobenzene	<5.00		5.00	ug/L			06/21/14 03:52	9
1,2,4-Trichlorobenzene	<5.00		5.00	ug/L			06/21/14 03:52	į
1,1,1-Trichloroethane	<1.00		1.00	ug/L			06/21/14 03:52	1
1,1,2-Trichloroethane	<1.00		1.00	ug/L			06/21/14 03:52	
Trichloroethene	<1.00		1.00	ug/L			06/21/14 03:52	
Trichlorofluoromethane	<4.00		4.00	ug/L			06/21/14 03:52	
1,2,3-Trichloropropane	<1.00		1.00	ug/L			06/21/14 03:52	
1,2,4-Trimethylbenzene	<1.00		1.00	ug/L			06/21/14 03:52	-
1,3,5-Trimethylbenzene	<1.00		1.00	ug/L			06/21/14 03:52	
√inyl chloride	<1.00		1.00	ug/L			06/21/14 03:52	
Kylenes, Total	<3.00		3.00	ug/L			06/21/14 03:52	
Bromodichloromethane	<1.00		1.00	ug/L			06/21/14 03:52	
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		75 _ 110	-	06/21/14 03:52	1
Dibromofluoromethane (Surr)	107		75 ₋ 120		06/21/14 03:52	1
Toluene-d8 (Surr)	99		80 - 120		06/21/14 03:52	1

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sam	ple ID: L	.CS 310-	-52108/6
---------	-----------	----------	----------

Matrix: Water

Analysis Batch: 52108

Client Sample ID	: Lab	Control Sample
	Droi	Type: Total/NA

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
Acetone	40.0	40.00	ug/L		100	60 - 150
Benzene	20.0	16.53	ug/L		83	70 - 130
Bromobenzene	20.0	17.14	ug/L		86	75 _– 13 0
Bromochloromethane	20.0	17.59	ug/L		88	65 - 145
Bromoform	20.0	17.97	ug/L		90	30 - 125
Bromomethane	20.0	19.57	ug/L		98	35 _ 130
2-Butanone (MEK)	40.0	38.50	ug/L		96	55 - 140
n-Butylbenzene	20.0	15.67	ug/L		78	55 - 135
sec-Butylbenzene	20.0	16.87	ug/L		84	65 - 135
ert-Butylbenzene	20.0	16.74	ug/L		84	60 - 135
Carbon disulfide	20.0	16.12	ug/L		81	40 - 130
Carbon tetrachloride	20.0	18.64	ug/L		93	55 - 130
Chlorobenzene	20.0	17.28	ug/L		86	75 - 125
Chlorodibromomethane	20.0	17.80	ug/L		89	45 - 125
Chloroethane	20.0	18.17	ug/L		91	55 - 135
Chloroform	20.0	17.66	ug/L		88	70 ₋ 125
Chloromethane	20.0	16.41	ug/L		82	30 - 125
2-Chlorotoluene	20.0	16.91	ug/L		85	75 - 135
l-Chlorotoluene	20.0	17.28	ug/L		86	70 _ 140
,2-Dibromo-3-Chloropropane	20.0	15,72	ug/L		79	35 _ 130
,2-Dibromoethane (EDB)	20.0	17.41	ug/L		87	70 - 135
Dibromomethane	20.0	17.92	ug/L		90	75 ₋ 130
,2-Dichlorobenzene	20.0	16.80	ug/L		84	65 _ 135
,4-Dichlorobenzene	20.0	16.35	ug/L		82	60 - 140
,3-Dichlorobenzene	20.0	17.31	ug/L		87	70 - 130
Dichlorodifluoromethane	20.0	17.99	ug/L		90	35 _ 130
,1-Dichloroethane	20.0	17.11	ug/L		86	60 _ 130
,2-Dichloroethane	20.0	19.42	ug/L		97	65 - 140
,1-Dichloroethene	20.0	17.34	ug/L		87	60 _ 135
is-1,2-Dichloroethene	20.0	17.40	ug/L		87	70 ₋ 135
rans-1,2-Dichloroethene	20.0	16.88	ug/L		84	60 - 145
,2-Dichloropropane	20.0	16.86	ug/L		84	65 _ 130
,3-Dichloropropane	20.0	17.43	ug/L		87	75 - 125
2,2-Dichloropropane	20.0	16.25	ug/L		81	25 _ 120
,1-Dichloropropene	20.0	16.52	ug/L		83	60 - 140
is-1,3-Dichloropropene	20,0	16.65	ug/L		83	30 _ 120
rans-1,3-Dichloropropene	20.0	15.39	ug/L		77	35 _ 120
thylbenzene	20.0	16.89	ug/L		84	70 - 130
lexachlorobutadiene	20.0	15.63	ug/L		78	60 - 135
lexane	20.0	14.92	ug/L		75	40 - 135
sopropylbenzene	20,0	17.11	ug/L		86	70 _ 125
-Isopropyltoluene	20.0	16.78	ug/L		84	60 - 140
Methylene Chloride	20.0	18,32	ug/L		92	55 _ 145
flethyl tert-butyl ether	20.0	18.03	ug/L		90	50 - 135
laphthalene	20.0	14.15	ug/L		71	40 - 135
I-Propylbenzene	20.0	17.28	ug/L		86	70 _ 135
ityrene	20.0	17.62	ug/L		88	70 - 130
1,1,2-Tetrachloroethane	20.0	18.31	ug/L		92	65 - 120

TestAmerica Cedar Falls

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample II	D: LCS	310-52108/6
---------------	--------	-------------

Matrix: Water

Analysis Batch: 52108

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachioroethane	20.0	16.80		ug/L	====	84	65 _ 130	
Tetrachloroethene	20.0	18.57		ug/L		93	70 - 135	
Toluene	20.0	16.65		ug/L		83	70 ₋ 135	
1,2,3-Trichlorobenzene	20.0	15.53		ug/L		78	55 _ 130	
1,2,4-Trichlorobenzene	20.0	15.10		ug/L		76	40 _ 135	
1,1,1-Trichloroethane	20.0	18.71		ug/L		94	60 _ 125	
1,1,2-Trichloroethane	20.0	16.82		ug/L		84	75 _ 125	
Trichloroethene	20.0	16.23		ug/L		81	70 - 130	
Trichlorofluoromethane	20.0	20.24		ug/L		101	55 _ 145	
1,2,3-Trichloropropane	20.0	17.24		ug/L		86	60 _ 150	
1,2,4-Trimethylbenzene	20.0	17,29		ug/L		86	70 - 140	
1,3,5-Trimethylbenzene	20.0	17.61		ug/L		88	70 - 140	
Vinyl chloride	20.0	16.80		ug/L		84	45 _ 135	
Xylenes, Total	40.0	33.65		ug/L		84	70 _ 130	
Bromodichloromethane	20.0	18.05		ug/L		90	60 - 130	

LCS L	cs
-------	----

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		75 - 110
Dibromofluoromethane (Surr)	111		75 ₋ 120
Toluene-d8 (Surr)	98		80 - 120

QC Association Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

GC/MS VOA

Prep Batch: 51459

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-32823-7	GP-1 7.5-8	Total/NA	Soil	5035	
310-32823-8	GP-2 7.5-8	Total/NA	Soil	5035	
310-32823-9	GP-3 6.5-7.5	Total/NA	Soil	5035	
310-32823-10	GP-4 6-7	Total/NA	Soil	5035	
310-32823-11	GP-5 6-7	Total/NA	Soil	5035	
310-32823-12	GP-6 6-7	Total/NA	Soil	5035	
310-32823-13	Meth Blank	Total/NA	Soil	5035	
LCS 310-51459/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 310-51459/3-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 310-51459/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 51461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-32823-7	GP-1 7.5-8	Total/NA	Soil	8260B	51459
310-32823-8	GP-2 7.5-8	Total/NA	Soil	8260B	51459
310-32823-9	GP-3 6.5-7.5	Total/NA	Soil	8260B	51459
310-32823-10	GP-4 6-7	Total/NA	Soil	8260B	51459
310-32823-11	GP-5 6-7	Total/NA	Soil	8260B	51459
310-32823-12	GP-6 6-7	Total/NA	Soil	8260B	51459
310-32823-13	Meth Blank	Total/NA	Soil	8260B	51459
LCS 310-51459/2-A	Lab Control Sample	Total/NA	Solid	8260B	51459
LCSD 310-51459/3-A	Lab Control Sample Dup	Total/NA	Solid	8260B	51459
MB 310-51459/1-A	Method Blank	Total/NA	Solid	8260B	51459

Analysis Batch: 52092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-32823-1	GP-1	Total/NA	Ground Water	8260B	
310-32823-2	GP-2	Total/NA	Ground Water	8260B	
LCS 310-52092/6	Lab Control Sample	Total/NA	Water	8260B	
MB 310-52092/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 52108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-32823-3	GP-3	Total/NA	Ground Water	8260B	
310-32823-4	GP-4	Total/NA	Ground Water	8260B	
310-32823-5	GP-5	Total/NA	Ground Water	8260B	
310-32823-6	GP-6	Total/NA	Ground Water	8260B	
310-32823-14	HCL Blank	Total/NA	Water	8260B	
LCS 310-52108/6	Lab Control Sample	Total/NA	Water	8260B	
MB 310-52108/5	Method Blank	Total/NA	Water	8260B	

General Chemistry

Analysis Batch: 51409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-32823-7	GP-1 7,5-8	Total/NA	Soil	Moisture	
310-32823-8	GP-2 7.5-8	Total/NA	Sail	Moisture	
310-32823-9	GP-3 6.5-7.5	Total/NA	Soil	Moisture	
310-32823-10	GP-4 6-7	Total/NA	Soil	Moisture	
310-32823-11	GP-5 6-7	Total/NA	Soil	Moisture	

QC Association Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

General Chemistry (Continued)

Analysis Batch: 51409 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-32823-12	GP-6 6-7	Total/NA	Soil	Moisture	

5

6

.

9

10

12

13

14

15

Lab Chronicle

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-1

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-1

Matrix: Ground Water

Batch

Batch Dilution Batch Prepared Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 52092 06/21/14 01:17 SJN TAL CF

Client Sample ID: GP-2

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-2

Matrix: Ground Water

Batch Prep Type Туре Total/NA Analysis

Batch Method 8260B

Dilution Factor

Batch Number 52092

Prepared or Analyzed 06/21/14 01:43

Analyst SJN

Lah TAL CF

Client Sample ID: GP-3

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-3

Matrix: Ground Water

Prep Type Total/NA

Type Analysis Batch Method 8260B

Run

Run

Dilution Factor

Batch Prepared or Analyzed Number 52108 06/21/14 06:26

Analyst SJN

Lab TAL CE

Client Sample ID: GP-4

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-4

Matrix: Ground Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 52108 06/21/14 06:52 TAL CF SJN

Client Sample ID: GP-5

Date Collected: 06/10/14 00:00

Lab Sample ID: 310-32823-5

Matrix: Ground Water

Date Received: 06/13/14 09:12

Batch Prep Type Туре Total/NA Analysis Batch Method

8260B

Run

Dilution Factor

Batch Number 52108

Prepared or Analyzed 06/21/14 07:18

Analyst SJN

Lab TAL CF

Client Sample ID: GP-6

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12

Prepared

Lab Sample ID: 310-32823-6 Matrix: Ground Water

Prep Type Total/NA

Batch Type Analysis Batch Method 8260B

Run

Dilution Factor

Batch Number 52108

or Analyzed 06/21/14 07:44

Analyst SJN

Lab TAL CF

Lab Chronicle

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Client Sample ID: GP-1 7.5-8

Date Collected: 06/10/14 00:00

Lab Sample ID: 310-32823-7

Matrix: Soil

Date Received: 06/13/14 09:12

Percent Solids: 86.3

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
ı	Total/NA	Prep	5035			51459	06/15/14 10:13	TCH	TAL CF
1	Total/NA	Analysis	8260B		1	51461	06/15/14 19:23	TCH	TAL CF
	Total/NA	Analysis	Moisture		1	51409	06/13/14 14:32	SAS	TAL CF

6

57

Client Sample ID: GP-2 7.5-8

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-8

Matrix: Soil

Percent Solids: 84.2

10

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			51459	06/15/14 10:13	TCH	TAL CF
Total/NA	Analysis	8260B		1	51461	06/15/14 19:54	TCH	TAL CF
Total/NA	Analysis	Moisture		1	51409	06/13/14 14:32	SAS	TAL CF

11

12

Client Sample ID: GP-3 6.5-7.5

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-9

Matrix: Soil

Percent Solids: 82.9

14

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035	,(la	3 3	51459	06/15/14 10:13	TCH	TAL CF
Total/NA	Analysis	8260B		1	51461	06/15/14 20:24	TCH	TAL CF
Total/NA	Analysis	Moisture		1	51409	06/13/14 14:32	SAS	TAL CF

15

Client Sample ID: GP-4 6-7

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-10

Matrix: Soil

Percent Solids: 92.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			51459	06/15/14 10:13	TCH	TAL CF
Total/NA	Analysis	8260B		1	51461	06/15/14 20:54	TCH	TAL CF
Total/NA	Analysis	Moisture		1	51409	06/13/14 14:32	SAS	TAL CF

Client Sample ID: GP-5 6-7

Date Collected: 06/10/14 00:00 Date Received: 06/13/14 09:12 Lab Sample ID: 310-32823-11

Matrix: Soil

Percent Solids: 77.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			51459	06/15/14 10:13	TCH	TAL CF
Total/NA	Analysis	8260B		1	51461	06/15/14 21:25	TCH	TAL CF
Total/NA	Analysis	Moisture		1	51409	06/13/14 14:32	SAS	TAL CF

Lab Chronicle

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI

Client Sample ID: GP-6 6-7

Date Collected: 06/10/14 00:00

Date Received: 06/13/14 09:12

TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Lab Sample ID: 310-32823-12

Matrix: Soil

Percent Solids: 81.5

ı				
H	-			-
8	-		=	4
U		r		

	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	ог Analyzed	Analyst	Lab	
Total/NA	Prep	5035		8	51459	06/15/14 10:13	TCH	TAL CF	
Total/NA	Analysis	8260B		i	51461	06/15/14 21:55	TCH	TAL CF	
Total/NA	Analysis	Moisture		ä	51409	06/13/14 14:32	SAS	TAL CF	

Client Sample ID: Meth Blank

Date Collected: 06/10/14 00:00

Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-13

Matrix: Soil

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			51459	06/15/14 10:13	TCH	TAL CF
Total/NA	Analysis	8260B		1	51461	06/15/14 14:50	TCH	TAL CF

Client Sample ID: HCL Blank

Date Collected: 06/10/14 00:00

Date Received: 06/13/14 09:12

Lab Sample ID: 310-32823-14

Matrix: Water

Batch Batch Dilution Batch Prepared Ргер Туре Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260B 52108 06/21/14 08:10 SJN TAL CF

Laboratory References:

TAL CF = TestAmerica Cedar Falls, 704 Enterprise Drive, Cedar Falls, IA 50613, TEL (319)277-2401

Certification Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Laboratory: TestAmerica Cedar Falls

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
AIHA	IHLAP		101044	11-01-14
Illinois	NELAP	5	200024	11-29-14
Iowa	State Program	7	7	12-01-13 *
Kansas	NELAP	7	E-10341	01-31-15
Minnesota	NELAP	5	019-999-319	12-31-14
North Dakota	State Program	8	R-186	09-29-14
Oregon	NELAP	10	IA100001	09-29-14
Wisconsin	State Program	5	999917270	08-31-14

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Nova Consulting Group Inc Project/Site: Delta Plaza - Escanaba, MI TestAmerica Job ID: 310-32823-1

SDG: W14-0447

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CF
Moisture	Percent Moisture	EPA	TAL CF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

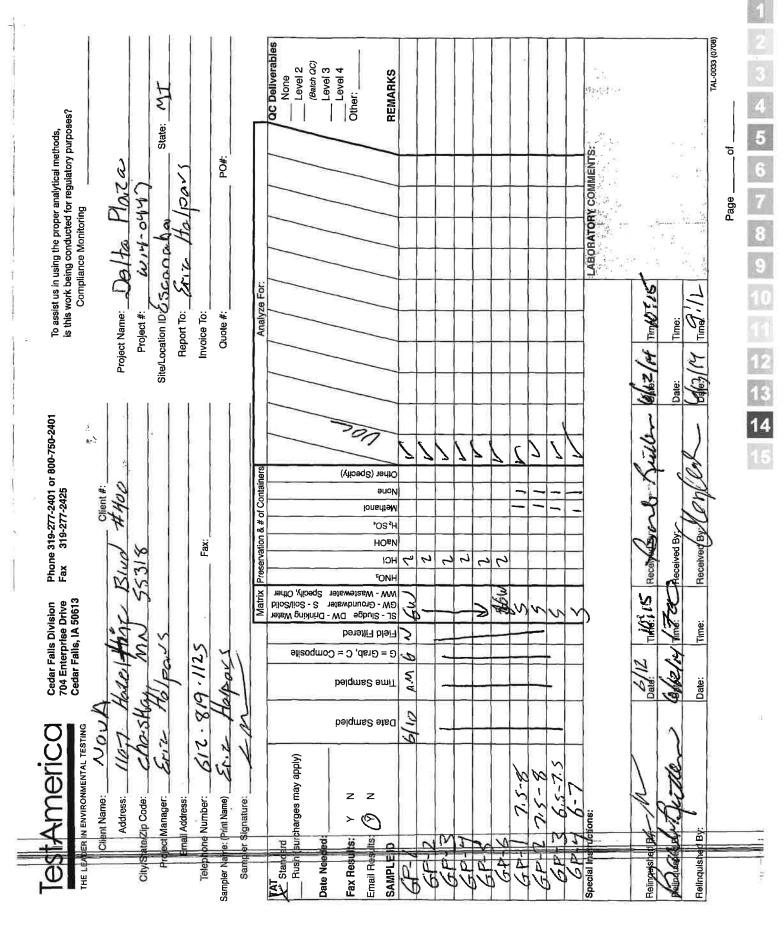
Laboratory References:

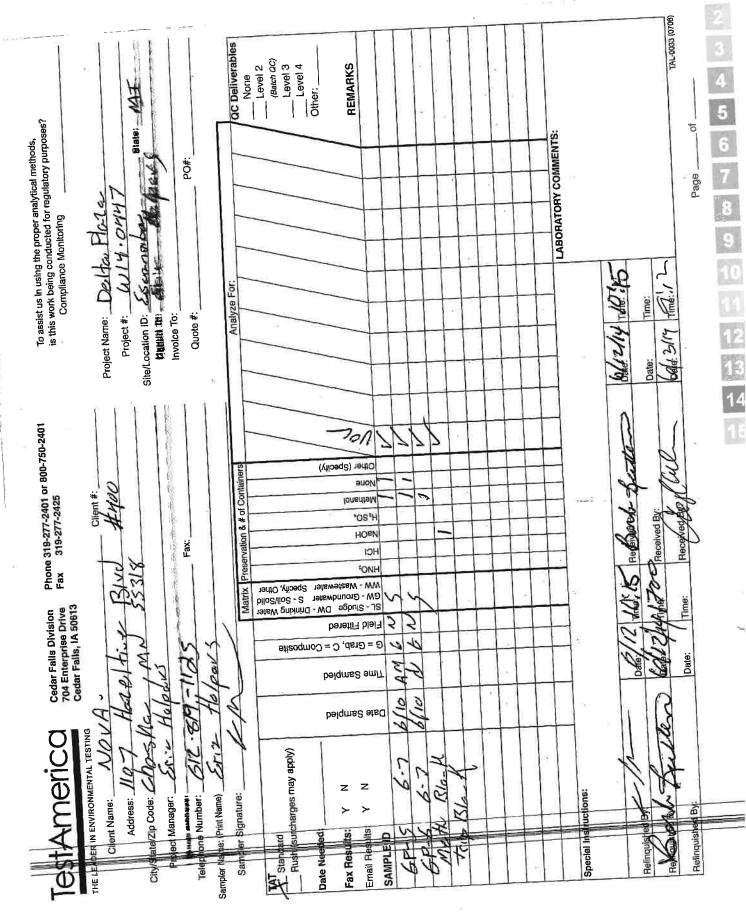
TAL CF = TestAmerica Cedar Falls, 704 Enterprise Drive, Cedar Falls, IA 50613, TEL (319)277-2401

<u>TestAmerica</u>

704 Enterprise Drive • Cedar Falls, IA 50613 Tel 319-277-2401 • Fax 319-277-2425

TestAmerica Sample Receipt au Cedar Falls Facility




310-32823 Chain of Custody

Client: NOVA	Project: Delta Plaza
City:	Štate:
Date: 6 13-114 Receiver's Initials:	Time (Delivered):
Temperature Record: Thermometer:	Courier:
Cooler ID# (If Applicable) IR "E" - 111531	
IR "Front" - 618	
Uncorrected Temp: IR "G" - 130198	
Corrected Temp: Other:	Spee-Dee
	Exceptions Noted:
Temperature blank	Sample(s) not received in cooler
Temperature out of compliance	Sample(s) received same day of sampling
Coolant Record:	Evidence of chilling process
Received on ice	Temp blank <0°C, samples NOT FROZEN
Wet ice	Temp blank <0°C, samples FROZEN
Blue ice	Temperature not taken: (indicate reason)
Dry ice	
Other:	Non-Conformance Report Started
Custody Seals:	Non-containance (Ceport Started
	oler Custody Seals Intact?
Yes No	No N/A
	nple Custody Seals Intact?
Yes / No	Yes No WA

Document No.: CF-LG-WI-002

Revision: 20 Date: 7/31/2013

Page 58 of 59

6/24/2014

Login Sample Receipt Checklist

Client: Nova Consulting Grou

Job Number: 310-32823-1

SDG Number: W14-0447

List Source: TestAmerica Cedar Falls

Login Number: 32823 List Number: 1

.ist Number: 1 Creator: Wilson, Cheryl L	Answer	Comment
Question	N/A	
Question Radioactivity wasn't checked ofগে= background as measured by a		
survey meter.	True	
The cooler's custody seal, if preset is intact.	N/A	
Sample custody seals, if presentere intact.	True	
Sample custody search in pro-		
tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is accepta	True	
Cooler Temperature is recorded	True	
COC is present.	True	
COC is filled out in ink and legil	True	
COC is filled out with all pertine information.	True	
to the name pression COC?	True	
Is the Field Sampler's name process. There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holes Time.	True	
Sample containers have legible ss.	True	
Containers are not broken or leas	True	
Sample collection date/times ar vided.	True	
Appropriate sample containers assed.	True	
Sample bottles are completely fills.	True	
Description Verified.	True	
Sample Preservation volumes. There is sufficient vol. for all requested analyses, incl. any requested		
	True	
MS/MSDs Containers requiring zero heads have no headspace or bubble is		
<6mm (1/4").	True	
Multiphasic samples are not preath	True	
Samples do not require splittingasompositing.	N/A	
Residual Chlorine Checked.		